Analysis of optimal superconvergence of an ultraweak-local discontinuous Galerkin method for a time dependent fourth-order equation
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 6, pp. 1797-1820.

In this paper, we study superconvergence properties of the ultraweak-local discontinuous Galerkin (UWLDG) method in Tao et al. [To appear in Math. Comput. DOI: https://doi.org/10.1090/mcom/3562 (2020).] for an one-dimensional linear fourth-order equation. With special initial discretizations, we prove the numerical solution of the semi-discrete UWLDG scheme superconverges to a special projection of the exact solution. The order of this superconvergence is proved to be k + min(3, k) when piecewise $$ polynomials with k ≥ 2 are used. We also prove a 2k-th order superconvergence rate for the cell averages and for the function values and derivatives of the UWLDG approximation at cell boundaries. Moreover, we prove superconvergence of (k + 2)-th and (k + 1)-th order of the function values and the first order derivatives of the UWLDG solution at a class of special quadrature points, respectively. Our proof is valid for arbitrary non-uniform regular meshes and for arbitrary k ≥ 2. Numerical experiments verify that all theoretical findings are sharp.

DOI : 10.1051/m2an/2020023
Classification : 65M60, 65M15
Mots-clés : Ultraweak-local discontinuous Galerkin methods, superconvergence, fourth order derivatives
@article{M2AN_2020__54_6_1797_0,
     author = {Liu, Yong and Tao, Qi and Shu, Chi-Wang},
     title = {Analysis of optimal superconvergence of an ultraweak-local discontinuous {Galerkin} method for a time dependent fourth-order equation},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1797--1820},
     publisher = {EDP-Sciences},
     volume = {54},
     number = {6},
     year = {2020},
     doi = {10.1051/m2an/2020023},
     mrnumber = {4129382},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2020023/}
}
TY  - JOUR
AU  - Liu, Yong
AU  - Tao, Qi
AU  - Shu, Chi-Wang
TI  - Analysis of optimal superconvergence of an ultraweak-local discontinuous Galerkin method for a time dependent fourth-order equation
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2020
SP  - 1797
EP  - 1820
VL  - 54
IS  - 6
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2020023/
DO  - 10.1051/m2an/2020023
LA  - en
ID  - M2AN_2020__54_6_1797_0
ER  - 
%0 Journal Article
%A Liu, Yong
%A Tao, Qi
%A Shu, Chi-Wang
%T Analysis of optimal superconvergence of an ultraweak-local discontinuous Galerkin method for a time dependent fourth-order equation
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2020
%P 1797-1820
%V 54
%N 6
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2020023/
%R 10.1051/m2an/2020023
%G en
%F M2AN_2020__54_6_1797_0
Liu, Yong; Tao, Qi; Shu, Chi-Wang. Analysis of optimal superconvergence of an ultraweak-local discontinuous Galerkin method for a time dependent fourth-order equation. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 6, pp. 1797-1820. doi : 10.1051/m2an/2020023. http://www.numdam.org/articles/10.1051/m2an/2020023/

S. Adjerid and T.C. Massey, Superconvergence of discontinuous Galerkin solutions for a nonlinear scalar hyperbolic problem. Comput. Methods Appl. Mech. Eng. 195 (2006) 3331–3346. | DOI | MR | Zbl

S. Adjerid, K.D. Devine, J.E. Flaherty and L. Krivodonova, A posteriori error estimation for discontinuous Galerkin solutions of hyperbolic problems. Comput. Methods Appl. Mech. Eng. 191 (2002) 1097–1112. | DOI | MR | Zbl

J. Bona, H. Chen, O. Karakashian and Y. Xing, Conservative, discontinuous Galerkin methods for the generalized Korteweg–de Vires equation. Math. Comput. 82 (2013) 1401–1432. | DOI | MR | Zbl

S.C. Brenner, Poincaré-Friedrichs inequalities for piecewise H 1 functions. SIAM J. Numer. Anal. 41 (2003) 306–324. | DOI | MR | Zbl

S.C. Brenner, Discrete Sobolev and Poincaré inequalities for piecewise polynomial functions. Electron. Trans. Numer. Anal. 18 (2004) 42–48. | MR | Zbl

W. Cao and Q. Huang, Superconvergence of local discontinuous Galerkin methods for partial differential equations with higher order derivatives. J. Sci. Comput. 72 (2017) 761–791. | DOI | MR

W. Cao, Z. Zhang and Q. Zou, Superconvergence of discontinuous Galerkin methods for linear hyperbolic equations. SIAM J. Numer. Anal. 52 (2014) 2555–2573. | DOI | MR | Zbl

W. Cao, C.-W. Shu, Y. Yang and Z. Zhang, Superconvergence of discontinuous Galerkin methods for two-dimensional hyperbolic equations. SIAM J. Numer. Anal. 53 (2015) 1651–1671. | DOI | MR

W. Cao, D. Li, Y. Yang and Z. Zhang, Superconvergence of discontinuous Galerkin methods based on upwind-biased fluxes for 1D linear hyperbolic equations. ESAIM: M2AN 51 (2017) 467–486. | DOI | Numdam | MR | Zbl

W. Cao, H. Liu and Z. Zhang, Superconvergence of the direct discontinuous Galerkin method for convection-diffusion equations. Numer. Methods Part. Diff. Equ. 33 (2017) 290–317. | DOI | MR

W. Cao, C.-W. Shu and Z. Zhang, Superconvergence of discontinuous Galerkin methods for 1-D linear hyperbolic equations with degenerate variable coefficients. ESAIM: M2AN 51 (2017) 2213–2235. | DOI | Numdam | MR | Zbl

W. Cao, C.-W. Shu, Y. Yang and Z. Zhang, Superconvergence of discontinuous Galerkin method for nonlinear hyperbolic equations. SIAM J. Numer. Anal. 56 (2018) 732–765. | DOI | MR

A. Chen, Y. Cheng, Y. Liu and M. Zhang, Superconvergence of ultra-weak discontinuous Galerkin methods for the linear Schrödinger equation in one dimension. J. Sci. Comput. 82 (2020) 1–44. | DOI | MR

Y. Cheng and C.-W. Shu, Superconvergence and time evolution of discontinuous Galerkin finite element solutions. J. Comput. Phys. 227 (2008) 9612–9627. | DOI | MR | Zbl

Y. Cheng and C.-W. Shu, A discontinuous Galerkin finite element method for time dependent partial differential equations with higher order derivatives. Math. Comput. 77 (2009) 699–730. | DOI | MR | Zbl

Y. Cheng and C.-W. Shu, Superconvergence of discontinuous Galerkin and local discontinuous Galerkin schemes for linear hyperbolic and convection-diffusion equations in one space dimension. SIAM J. Numer. Anal. 47 (2010) 4044–4072. | DOI | MR | Zbl

P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North Holland, Amsterdam, New York (1978). | MR | Zbl

B. Cockburn and C.-W. Shu, TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework. Math. Comput. 52 (1989) 411–435. | MR | Zbl

B. Cockburn and C.-W. Shu, The Runge-Kutta local projection P 1 -discontinuous Galerkin finite element method for scalar conservation laws. ESAIM:M2AN 25 (1991) 337–361. | DOI | Numdam | MR | Zbl

B. Cockburn and C.-W. Shu, The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141 (1998) 199–224. | DOI | MR

B. Cockburn and C.-W. Shu, The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35 (1998) 2440–2463. | DOI | MR | Zbl

B. Cockburn, S.-Y. Lin and C.-W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one dimensional systems. J. Comput. Phys. 84 (1989) 90–113. | DOI | MR | Zbl

B. Cockburn, S. Hou and C.-W. Shu, The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case. Math. Comput. 54 (1990) 545–581. | MR | Zbl

B. Dong and C.-W. Shu, Analysis of a local discontinuous Galerkin method for linear time-dependent fourth-order problems. SIAM J. Numer. Anal. 47 (2009) 3240–3268. | DOI | MR | Zbl

J. Douglas and T. Dupont, Interior penalty procedures for elliptic and parabolic Galerkin methods. Computing Methods in Applied Sciences. Springer, Berlin, Heidelberg (1976) 207–216. | DOI | MR

S.M. Han, H. Benaroya and T. Wei, Dynamics of transversely vibrating beams using four engineering theories. J. Sound Vibr. 225 (1999) 935–988. | DOI | Zbl

L. Ji and Y. Xu, Optimal error estimates of the local discontinuous Galerkin method for Willmore flow of graphs on Cartesian meshes. Int. J. Numer. Anal. Model. 8 (2011) 252–283. | MR | Zbl

L. Krivodonova, J. Xin, J.F. Remacle, N. Chevaugeon and J.E. Flaherty, Shock detection and limiting with discontinuous Galerkin methods for hyperbolic conservation laws. Appl. Numer. Math. 48 (2004) 323–338. | DOI | MR | Zbl

H. Liu and P. Yin, A mixed discontinuous Galerkin method without interior penalty for time-dependent fourth order problems. J. Sci. Comput. 77 (2018) 467–501. | DOI | MR

Y. Liu, C.-W. Shu and M. Zhang, Superconvergence of energy-conserving discontinuous Galerkin methods for linear hyperbolic equations. Commun. Appl. Math. Comput. 1 (2019) 101–116. | DOI | MR

I. Mozolevski, E. Süli and P.R. Bösing, h p -Version a priori error analysis of interior penalty discontinuous Galerkin finite element approximations to the biharmonic equation$hp$. J. Sci. Comput. 30 (2007) 465–491. | DOI | MR | Zbl

Q. Tao and Y. Xu, Superconvergence of arbitrary Lagrangian-Eulerian discontinuous Galerkin methods for linear hyperbolic equations. SIAM J. Numer. Anal. 57 (2019) 2141–2165. | MR

Q. Tao, Y. Xu and C.-W. Shu, An ultraweak-local discontinuous Galerkin method for PDEs with high order spatial derivatives. To appear in Math. Comput. DOI: (2020). | DOI | MR

H. Wang, C.-W. Shu and Q. Zhang, Stability and error estimates of local discontinuous Galerkin methods with implicit-explicit time-marching for advection-diffusion problems. SIAM J. Numer. Anal. 53 (2015) 206–227. | DOI | MR

H. Wang, S. Wang, C.-W. Shu and Q. Zhang, Local discontinuous Galerkin methods with implicit-explicit time-marching for multi-dimensional convection-diffusion problems. ESAIM: M2AN 50 (2016) 1083–1105. | DOI | Numdam | MR

Y. Xu and C.-W. Shu, Local discontinuous Galerkin methods for high-order time-dependent partial differential equations. Commun. Comput. Phys. 7 (2010) 1–46. | MR

Y. Xu and C.-W. Shu, Optimal error estimates of the semi-discrete local discontinuous Galerkin methods for high order wave equations. SIAM J. Numer. Anal. 50 (2012) 79–104. | DOI | MR | Zbl

J. Yan and C.-W. Shu, A local discontinuous Galerkin method for KdV type equations. SIAM J. Numer. Anal. 40 (2002) 769–791. | DOI | MR | Zbl

J. Yan and C.-W. Shu, Local discontinuous Galerkin methods for partial differential equations with higher order derivatives. J. Sci. Comput. 17 (2002) 27–47. | DOI | MR | Zbl

Y. Yang and C.-W. Shu, Analysis of optimal superconvergence of discontinuous Galerkin method for linear hyperbolic equations. SIAM J. Numer. Anal. 50 (2012) 3110–3133. | DOI | MR | Zbl

Cité par Sources :