Locality of interatomic forces in tight binding models for insulators
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 6, pp. 2295-2318.

The tight binding model is a minimalistic electronic structure model for predicting properties of materials and molecules. For insulators at zero Fermi-temperature we show that the potential energy surface of this model can be decomposed into exponentially localised site energy contributions, thus providing qualitatively sharp estimates on the interatomic interaction range which justifies a range of multi-scale models. For insulators at finite Fermi-temperature we obtain locality estimates that are uniform in the zero-temperature limit. A particular feature of all our results is that they depend only weakly on the point spectrum. Numerical tests confirm our analytical results. This work extends Chen and Ortner [Multiscale Model. Simul. 14 (2016) 232–264] and Chen et al. [Arch. Ration. Mech. Anal. 230 (2018) 701–733] to the case of zero Fermi-temperature as well as strengthening the results proved therein.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1051/m2an/2020020
Classification : 74E15, 74G65
Mots-clés : Strong locality, tight binding, point defects
@article{M2AN_2020__54_6_2295_0,
     author = {Ortner, Christoph and Thomas, Jack and Chen, Huajie},
     title = {Locality of interatomic forces in tight binding models for insulators},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {2295--2318},
     publisher = {EDP-Sciences},
     volume = {54},
     number = {6},
     year = {2020},
     doi = {10.1051/m2an/2020020},
     mrnumber = {4173148},
     zbl = {1466.74003},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2020020/}
}
TY  - JOUR
AU  - Ortner, Christoph
AU  - Thomas, Jack
AU  - Chen, Huajie
TI  - Locality of interatomic forces in tight binding models for insulators
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2020
SP  - 2295
EP  - 2318
VL  - 54
IS  - 6
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2020020/
DO  - 10.1051/m2an/2020020
LA  - en
ID  - M2AN_2020__54_6_2295_0
ER  - 
%0 Journal Article
%A Ortner, Christoph
%A Thomas, Jack
%A Chen, Huajie
%T Locality of interatomic forces in tight binding models for insulators
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2020
%P 2295-2318
%V 54
%N 6
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2020020/
%R 10.1051/m2an/2020020
%G en
%F M2AN_2020__54_6_2295_0
Ortner, Christoph; Thomas, Jack; Chen, Huajie. Locality of interatomic forces in tight binding models for insulators. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 6, pp. 2295-2318. doi : 10.1051/m2an/2020020. http://www.numdam.org/articles/10.1051/m2an/2020020/

M. Aizenman, Localization at weak disorder: some elementary bounds. Rev. Math. Phys. 06 (1994) 1163–1182. | DOI | MR

M. Aizenman and G.M. Graf, Localization bounds for an electron gas. J. Phys. A: Math. Gen. 31 (1998) 6783–6806. | DOI | MR

M. Aizenman and S. Molchanov, Localization at large disorder and at extreme energies: an elementary derivation. Commun. Math. Phys. 157 (1993) 245–278. | DOI | MR

A.P. Bartók, M.C. Payne, R. Kondor and G. Csányi, Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons. Phys. Rev. Lett. 104 (2010) 136403. | DOI

A.P. Bartók, J. Kermode, N. Bernstein and G. Csányi, Machine learning a general-purpose interatomic potential for silicon. Phys. Rev. X 8 (2018) 041048.

J. Behler and M. Parrinello, Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys. Rev. Lett. 98 (2007) 146401. | DOI

D.R. Bowler and T. Miyazaki, O(N) methods in electronic structure calculations. Rep. Prog. Phys. 75 (2012) 036503. | DOI

H.C. Chen et al., https://github.com/cortner/SKTB.jl.git

H. Chen and C. Ortner, QM/MM methods for crystalline defects. Part 1: locality of the tight binding model. Multiscale Model. Simul. 14 (2016) 232–264. | DOI | MR | Zbl

H. Chen and C. Ortner, QM/MM methods for crystalline defects. Part 2: consistent energy and force-mixing. Multiscale Model. Simul. 15 (2017) 184–214. | DOI | MR | Zbl

H. Chen, J. Lu and C. Ortner, Thermodynamic limit of crystal defects with finite temperature tight binding. Arch. Ration. Mech. Anal. 230 (2018) 701–733. | DOI | MR | Zbl

H. Chen, F. Nazar and C. Ortner, Geometry equilibration of crystalline defects in quantum and atomic descriptions. Math. Model. Methods Appl. Sci. 29 (2019) 419–492. | DOI | MR | Zbl

R. Cohen, M. Mehl and D. Papaconstantopoulos, Tight-binding total-energy method for transition and noble metals. Phys. Rev. B 50 (1994) 14694–14697. | DOI

J.M. Combes and L. Thomas, Asymptotic behaviour of eigenfunctions for multiparticle Schrödinger operators. Commun. Math. Phys. 34 (1973) 251–270. | DOI | MR

G. Csányi, T. Albaret, G. Moras, M.C. Payne and A. De Vita, Multiscale hybrid simulation methods for material systems. J. Phys. Condens. Matter 17 (2005) 691–703. | DOI

N. David Mermin, Thermal properties of the inhomogeneous electron gas. Phys. Rev. 137 (1965) 1441–1443. | DOI | MR

V. Ehrlacher, C. Ortner and A.V. Shapeev, Analysis of boundary conditions for crystal defect atomistic simulations. Arch. Ration. Mech. Anal. 222 (2016) 1217–1268. | DOI | MR | Zbl

A. Figotin and A. Klein, Localization phenomenon in gaps of the spectrum of random lattice operators. J. Stat. Phys. 75 (1994) 997–1021. | DOI | MR

M. Finnis, Interatomic Forces in Condensed Matter. Oxford University Press (2003). | DOI

S. Goedecker, Linear scaling electronic structure methods. Rev. Mod. Phys. 71 (1999) 1085–1123. | DOI

S. Goedecker and M. Teter, Tight-binding electronic-structure calculations and tight-binding molecular dynamics with localized orbitals. Phys. Rev. B 51 (1995) 9455–9464. | DOI

W.W. Hager, Updating the inverse of a matrix. SIAM Rev. 31 (1989) 221–239. | DOI | MR

T. Kato, Perturbation Theory for Linear Operators Springer. 2nd edition. Springer-Verlag Berlin Heidelberg (1995). | DOI | MR | Zbl

C. Kittel, Introduction to Solid State Physics. eighth edition. Wiley (2004).

W. Kohn, Density functional and density matrix method scaling linearly with the number of atoms. Phys. Rev. Lett. 76 (1996) 3168–3171. | DOI

R.M. Martin, Electronic Structure: Basic Theory and Practical Methods. Cambridge University Press (2004). | DOI

M. Mehl and D. Papaconstantopoulos, Applications of a tight-binding total-energy method for transition and noble metals: elastic constants, vacancies, and surfaces of monatomic metals. Phys. Rev. B 54 (1996) 4519–4530. | DOI

A.M.N. Niklasson, Density matrix methods in linear scaling electronic structure theory, chapter 16. Linear-Scaling Techniques in Computational Chemistry and Physics. Springer, Dordrecht (2011) 439–473. | DOI

C. Ortner and A.V. Shapeev, Interpolants of lattice functions for the analysis of atomistic/continuum multiscale methods. Preprint (2012). | arXiv

C. Ortner and J. Thomas, Point defects in tight binding models for insulators, in preparation.

D. Papaconstantopoulos, Handbook of the Band Structure of Elemental Solids, from Z = 1 to Z = 112. Springer New York (2015). | DOI

D. Papaconstantopoulos, M. Mehl, S. Erwin and M. Pederson, Tight-binding Hamiltonians for carbon and silicon. Symp. R – Tight Binding Approach Comput. Mater. Sci. 491 (1997) 221.

M. Reed and B. Simon, Functional Analysis (Methods of Modern Mathematical Physics), Academic Press (1980). | MR

A.V. Shapeev, Moment tensor potentials: a class of systematically improvable interatomic potentials. Multiscale Model. Simul. 14 (2016) 1153–1173. | DOI | MR | Zbl

J.C. Slater and G.F. Koster, Simplified LCAO method for the periodic potential problem. Phys. Rev. 94 (1954) 1498–1524. | DOI

E. Weinan and J. Lu, Electronic structure of smoothly deformed crystals: Cauchy-Born rule for the nonlinear tight-binding model. Commun. Pure Appl. Math. 63 (2010) 1432–1468. | DOI | MR

Cité par Sources :