Mathematical modelling of acoustic radiation force in transient shear wave elastography in the heart
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 6, pp. 2319-2350.

The aim of this work is to provide a mathematical model and analysis of the excitation and the resulting shear wave propagation in acoustic radiation force (ARF)-based shear wave cardiac elastography. Our approach is based on asymptotic analysis; more precisely, it consists in considering a family of problems, parametrised by a small parameter inversely proportional to the excitation frequency of the probes, the viscosity and the velocity of pressure wave propagation. We derive a simplified model for the expression of the ARF by investigating the limit behaviour of the solution when the small parameter goes to zero. By formal asymptotic analysis – an asymptotic expansion of the solution is used – and energy analysis of the nonlinear elastodynamic problem, we show that the leading-order term of the expansion is solution of the underlying, incompressible, nonlinear cardiac mechanics. Subsequently, two corrector terms are derived. The first is a fast-oscillating pressure wave generated by the probes, solution of a Helmholtz equation at every time. The second corrector term consists in an elastic field with prescribed divergence, having a function of the first corrector as a source term. This field corresponds to the shear acoustic wave induced by the ARF. We also confirm that, in cardiac mechanics, the presence of viscosity in the model is essential to derive an expression of the shear wave propagation from the ARF, and that this phenomenon is related to the nonlinearity of the partial differential equation.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1051/m2an/2020019
Classification : 35B40, 35Q74, 74H10, 74J30
Mots-clés : Shear wave elastography, acoustic radiation force, asymptotic analysis
@article{M2AN_2020__54_6_2319_0,
     author = {Caforio, Federica and Imperiale, S\'ebastien},
     title = {Mathematical modelling of acoustic radiation force in transient shear wave elastography in the heart},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {2319--2350},
     publisher = {EDP-Sciences},
     volume = {54},
     number = {6},
     year = {2020},
     doi = {10.1051/m2an/2020019},
     mrnumber = {4173147},
     zbl = {1470.35356},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2020019/}
}
TY  - JOUR
AU  - Caforio, Federica
AU  - Imperiale, Sébastien
TI  - Mathematical modelling of acoustic radiation force in transient shear wave elastography in the heart
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2020
SP  - 2319
EP  - 2350
VL  - 54
IS  - 6
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2020019/
DO  - 10.1051/m2an/2020019
LA  - en
ID  - M2AN_2020__54_6_2319_0
ER  - 
%0 Journal Article
%A Caforio, Federica
%A Imperiale, Sébastien
%T Mathematical modelling of acoustic radiation force in transient shear wave elastography in the heart
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2020
%P 2319-2350
%V 54
%N 6
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2020019/
%R 10.1051/m2an/2020019
%G en
%F M2AN_2020__54_6_2319_0
Caforio, Federica; Imperiale, Sébastien. Mathematical modelling of acoustic radiation force in transient shear wave elastography in the heart. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 6, pp. 2319-2350. doi : 10.1051/m2an/2020019. http://www.numdam.org/articles/10.1051/m2an/2020019/

[1] J. Bercoff, M. Tanter and M. Fink, Supersonic shear imaging: a new technique for soft tissue elasticity mapping. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51 (2004) 396–409. | DOI

[2] A. Caenen, A biomechanical analysis of shear wave elastography in pediatric heart models. Ph.D. thesis. Ghent University (2018).

[3] A. Caenen, M. Pernot, M. Peirlinck, L. Mertens, A. Swillens and P. Segers, An in silico framework to analyze the anisotropic shear wave mechanics in cardiac shear wave elastography. Phys. Med. Biol. 63 (2018) 075005. | DOI

[4] F. Caforio, Mathematical modelling and numerical simulation of elastic wave propagation in soft tissues with application to cardiac elastography. Ph.D. thesis. Université Paris-Saclay (2019).

[5] D. Chapelle, P. Le Tallec, P. Moireau and M. Sorine, An energy-preserving muscle tissue model: formulation and compatible discretizations. Int. J. Multiscale Comput. Eng. 10 (2012) 189–211. | DOI

[6] P.G. Ciarlet, Mathematical Elasticity. In: Vols. I and 20 of Studies in Mathematics and its Applications (1988). | MR

[7] P.G. Ciarlet and G. Geymonat, Sur les lois de comportement en élasticité non linéaire compressible. CR Acad. Sci. Paris Sér. II 295 (1982) 423–426. | MR

[8] E.V. Dontsov and B.B. Guzina, Effect of low-frequency modulation on the acoustic radiation force in newtonian fluids. SIAM J. Appl. Math. 71 (2011) 356–378. | DOI | MR

[9] E.V. Dontsov and B.B. Guzina, Acoustic radiation force in tissue-like solids due to modulated sound field. J. Mech. Phys. Solids 60 (2012) 1791–1813. | DOI | MR

[10] E.V. Dontsov and B.B. Guzina, On the KZK-type equation for modulated ultrasound fields. Wave Motion 50 (2013) 763–775. | DOI | MR | Zbl

[11] M. Fatemi and J.F. Greenleaf, Ultrasound-stimulated vibro-acoustic spectrography. Science 280 (1998) 82–85. | DOI

[12] J.L. Gennisson, M. Rénier, S. Catheline, C. Barrière, J. Bercoff, M. Tanter and M. Fink, Acoustoelasticity in soft solids: assessment of the nonlinear shear modulus with the acoustic radiation force. J. Acoust. Soc. Am. 122 (2007) 3211–3219. | DOI

[13] O. Gültekin, G. Sommer and G.A. Holzapfel, An orthotropic viscoelastic model for the passive myocardium: continuum basis and numerical treatment. Comput. Methods Biomech. Biomed. Eng. 19 (2016) 1647–1664. | DOI

[14] M. Hadjicharalambous, L. Asner, R. Chabiniok, E. Sammut, J. Wong, D. Peressutti, E. Kerfoot, A. King, J. Lee, R. Razavi and N. Smith, Non-invasive model-based assessment of passive left-ventricular myocardial stiffness in healthy subjects and in patients with non-ischemic dilated cardiomyopathy. Ann. Biomed. Eng. 45 (2017) 605–618. | DOI

[15] M.F. Hamilton and D.T. Blackstock, Nonlinear Acoustics. Academic Press, San Diego 1 (1998).

[16] G.A. Holzapfel and R.W. Ogden, Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Philos. Trans. R. Soc. London A: Math. Phys. Eng. Sci. 367 (2009) 3445–3475. | MR

[17] J.-L. Lions, G. Papanicolaou and A. Bensoussan, Asymptotic Analysis for Periodic Structures. North-Holland (1978). | MR

[18] L.E. Malvern, Introduction to the Mechanics of a Continuous Medium. Number Monograph (1969).

[19] S.A. Mcaleavey, M. Menon and J. Orszulak, Shear-modulus estimation by application of spatially-modulated impulsive acoustic radiation force. Ultrason. Imaging 29 (2007) 87–104. | DOI

[20] K. Nightingale, M.S. Soo, R. Nightingale and G. Trahey, Acoustic radiation force impulse imaging: in vivo demonstration of clinical feasibility. Ultrasound Med. Biol. 28 (2002) 227–235. | DOI

[21] K. Nightingale, S. Mcaleavey and G. Trahey, Shear-wave generation using acoustic radiation force: in vivo and ex vivo results. Ultrasound Med. Biol. 29 (2003) 1715–1723. | DOI

[22] R.W. Ogden, Non-linear Elastic Deformations. Courier Corporation (1997).

[23] L. Ostrovsky, A. Sutin, Y. Il’Inskii, O. Rudenko and A. Sarvazyan, Radiation force and shear motions in inhomogeneous media. J. Acoust. Soc. Am. 121 (2007) 1324–1331. | DOI

[24] M.L. Palmeri, A.C. Sharma, R.R. Bouchard, R.W. Nightingale and K.R. Nightingale, A finite-element method model of soft tissue response to impulsive acoustic radiation force. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52 (2005) 1699–1712. | DOI

[25] O.V. Rudenko, A.P. Sarvazyan and S.Y. Emelianov, Acoustic radiation force and streaming induced by focused nonlinear ultrasound in a dissipative medium. J. Acoust. Soc. Am. 99 (1996) 2791–2798. | DOI

[26] A.P. Sarvazyan, O.V. Rudenko, S.D. Swanson, J.B. Fowlkes and S.Y. Emelianov, Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics. Ultrasound Med. Biol. 24 (1998) 1419–1435. | DOI

[27] A.P. Sarvazyan, O.V. Rudenko and W.L. Nyborg, Biomedical applications of radiation force of ultrasound: historical roots and physical basis. Ultrasound Med. Biol. 36 (2010) 1379–1394. | DOI

[28] A. Sarvazyan, T.J. Hall, M.W. Urban, M. Fatemi, S.R. Aglyamov and B.S. Garra, An overview of elastography-an emerging branch of medical imaging. Curr. Med. Imaging Rev. 7 (2011) 255–282. | DOI

[29] P. Song, H. Zhao, A. Manduca, M.W. Urban, J.F. Greenleaf and S. Chen, Comb-push ultrasound shear elastography (CUSE): a novel method for two-dimensional shear elasticity imaging of soft tissues. IEEE Trans. Med. Imaging 31 (2012) 1821–1832. | DOI

[30] G.R. Torr, The acoustic radiation force. Am. J. Phys. 52 (1984) 402–408. | DOI

[31] E.A. Zabolotskaya, M.F. Hamilton, Y.A. Ilinskii and G.D. Meegan, Modeling of nonlinear shear waves in soft solids. J. Acoust. Soc. Am. 116 (2004) 2807–2813. | DOI

Cité par Sources :