Numerical algorithm for the model describing anomalous diffusion in expanding media
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 6, pp. 2265-2294.

We provide a numerical algorithm for the model characterizing anomalous diffusion in expanding media, which is derived in Le Vot et al. [Phys. Rev. E 96 (2017) 032117]. The Sobolev regularity for the equation with variable coefficient is first established. Then we use the finite element method to discretize the Laplace operator and present error estimate of the spatial semi-discrete scheme based on the regularity of the solution; the backward Euler convolution quadrature is developed to approximate Riemann–Liouville fractional derivative and the error estimates for the fully discrete scheme are established by using the continuity of solution. Finally, the numerical experiments verify the effectiveness of the algorithm.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1051/m2an/2020018
Classification : 65M60, 42A85, 35R11
Mots-clés : Fractional diffusion equation, variable coefficient, finite element method, convolution quadrature, error analysis
@article{M2AN_2020__54_6_2265_0,
     author = {Nie, Daxin and Sun, Jing and Deng, Weihua},
     title = {Numerical algorithm for the model describing anomalous diffusion in expanding media},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {2265--2294},
     publisher = {EDP-Sciences},
     volume = {54},
     number = {6},
     year = {2020},
     doi = {10.1051/m2an/2020018},
     mrnumber = {4173149},
     zbl = {1476.65246},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2020018/}
}
TY  - JOUR
AU  - Nie, Daxin
AU  - Sun, Jing
AU  - Deng, Weihua
TI  - Numerical algorithm for the model describing anomalous diffusion in expanding media
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2020
SP  - 2265
EP  - 2294
VL  - 54
IS  - 6
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2020018/
DO  - 10.1051/m2an/2020018
LA  - en
ID  - M2AN_2020__54_6_2265_0
ER  - 
%0 Journal Article
%A Nie, Daxin
%A Sun, Jing
%A Deng, Weihua
%T Numerical algorithm for the model describing anomalous diffusion in expanding media
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2020
%P 2265-2294
%V 54
%N 6
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2020018/
%R 10.1051/m2an/2020018
%G en
%F M2AN_2020__54_6_2265_0
Nie, Daxin; Sun, Jing; Deng, Weihua. Numerical algorithm for the model describing anomalous diffusion in expanding media. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 6, pp. 2265-2294. doi : 10.1051/m2an/2020018. http://www.numdam.org/articles/10.1051/m2an/2020018/

[1] A. Adams and J.F. Fournier, Sobolev Spaces. Academic Press (2003). | MR | Zbl

[2] A.A. Alikhanov, A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 280 (2015) 424–438. | DOI | MR | Zbl

[3] E. Barkai, Fractional Fokker-Planck equation, solution, and application. Phys. Rev. E 63 (2001) 046118. | DOI

[4] E. Barkai, R. Metzler and J. Klafter, From continuous time random walks to the fractional Fokker-Planck equation. Phys. Rev. E 61 (2000) 132–138. | DOI | MR

[5] E. Bazhlekova, B.T. Jin, R. Lazarov and Z. Zhou, An analysis of the Rayleigh-Stokes problem for a generalized second-grade fluid. Numer. Math. 131 (2015) 1–31. | DOI | MR | Zbl

[6] S. Chen, F. Liu, P. Zhuang and V. Anh, Finite difference approximations for the fractional Fokker-Planck equation. Appl. Math. Model. 33 (2009) 256–273. | DOI | MR | Zbl

[7] Y. Chen, X.D. Wang and W.H. Deng, Langevin dynamics for Lévy walk with memory. Phys. Rev. E 99 (2019) 012135. | DOI

[8] Y. Chen, X.D. Wang and W.H. Deng, Subdiffusion in an external force field. Phys. Rev. E 99 (2019) 042125. | DOI

[9] W.H. Deng, Finite element method for the space and time fractional Fokker-Planck equation. SIAM J. Numer. Anal. 47 (2009) 204–226. | DOI | MR | Zbl

[10] W.H. Deng and J.S. Hesthaven, Local discontinuous Galerkin methods for fractional diffusion equations. ESAIM: M2AN 47 (2013) 1845–1864. | DOI | Numdam | MR | Zbl

[11] M. Gunzburger, B.Y. Li and J.L. Wang, Sharp convergence rates of time discretization for stochastic time-fractional PDEs subject to additive space-time white noise. Math. Comput. 88 (2018) 1715–1741. | DOI | MR | Zbl

[12] B.T. Jin, R. Lazarov and Z. Zhou, Error estimates for a semidiscrete finite element method for fractional order parabolic equations. SIAM J. Numer. Anal. 51 (2013) 445–466. | DOI | MR | Zbl

[13] B.T. Jin, R. Lazarov, J. Pasciak and Z. Zhou, Error analysis of a finite element method for the space-fractional parabolic equation. SIAM J. Numer. Anal. 52 (2014) 2272–2294. | DOI | MR | Zbl

[14] B.T. Jin, R. Lazarov, J. Pasciak and Z. Zhou, Error analysis of semidiscrete finite element methods for inhomogeneous time-fractional diffusion. IMA J. Numer. Anal. 35 (2015) 561–582. | DOI | MR | Zbl

[15] B.T. Jin, R. Lazarov and Z. Zhou, Two fully discrete schemes for fractional diffusion and diffusion-wave equations with nonsmooth data. SIAM J. Sci. Comput. 38 (2016) A146–A170. | DOI | MR | Zbl

[16] B.T. Jin, B.Y. Li and Z. Zhou, Correction of high-order BDF convolution quadrature for fractional evolution equations. SIAM J. Sci. Comput. 39 (2017) A3129–A3152. | DOI | MR | Zbl

[17] B.T. Jin, B.Y. Li and Z. Zhou, Subdiffusion with a time-dependent coefficient: analysis and numerical solution. Math. Comput. 88 (2019) 2157–2186. | DOI | MR | Zbl

[18] C.E.S. Larsson, Error estimates with smooth and nonsmooth data for a finite element method for the Cahn-Hilliard equation. Math. Comput. 58 (1992) 603–630. | DOI | MR | Zbl

[19] F. Le Vot, E. Abad and S.B. Yuste, Continuous-time random-walk model for anomalous diffusion in expanding media. Phys. Rev. E 96 (2017) 032117. | DOI

[20] F. Le Vot and S.B. Yuste, Continuous-time random walks and Fokker-Planck equation in expanding media. Phys. Rev. E 98 (2018) 042117. | DOI | MR

[21] F. Le Vot, S.B. Yuste and E. Abad, Standard and fractional Ornstein-Uhlenbeck process on a growing domain. Phys. Rev. E 100 (2019) 012142. | DOI

[22] X.J. Li and C.J. Xu, A space-time spectral method for the time fractional diffusion equation. SIAM J. Numer. Anal. 47 (2009) 2108–2131. | DOI | MR | Zbl

[23] Y.M. Lin and C.J. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225 (2007) 1533–1552. | DOI | MR | Zbl

[24] C. Lubich, Convolution quadrature and discretized operational calculus I. Numer. Math. 52 (1988) 129–145. | DOI | MR | Zbl

[25] C. Lubich, Convolution quadrature and discretized operational calculus II. Numer. Math. 52 (1988) 413–425. | DOI | MR | Zbl

[26] C. Lubich, I.H. Sloan and V. Thome, Nonsmooth data error estimates for approximations of an evolution equation with a positive-type memory term. Math. Comput. 65 (1996) 1–17. | DOI | MR | Zbl

[27] K. Mustapha, FEM for time-fractional diffusion equations, novel optimal error analyses. Math. Comput. 87 (2018) 2259–2272. | DOI | MR | Zbl

[28] I. Podlubny, Fractional Differential Equations. Academic Press (1999). | MR | Zbl

[29] V. Thomée, Galerkin Finite Element Methods for Parabolic Problems. Springer-Verlag (2006). | MR

[30] P.B. Xu and W.H. Deng, Fractional compound Poisson processes with multiple internal states. MMNP 13 (2018) 10. | MR | Zbl

[31] S.B. Yuste, Weighted average finite difference methods for fractional diffusion equations. J. Comput. Phys. 216 (2006) 264–274. | DOI | MR | Zbl

[32] S.B. Yuste, E. Abad and C. Escudero, Diffusion in an expanding medium: Fokker-Planck equation, Green’s function, and first-passage properties. Phys. Rev. E 94 (2016) 032118. | DOI | MR

[33] F.H. Zeng, I. Turner and K. Burrage, A stable fast time-stepping method for fractional integral and derivative operators. J. Sci. Comput. 77 (2018) 283–307. | DOI | MR | Zbl

Cité par Sources :