Research Article
High-order Galerkin method for Helmholtz and Laplace problems on multiple open arcs
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 6, pp. 1975-2009.

We present a spectral Galerkin numerical scheme for solving Helmholtz and Laplace problems with Dirichlet boundary conditions on a finite collection of open arcs in two-dimensional space. A boundary integral method is employed, giving rise to a first kind Fredholm equation whose variational form is discretized using weighted Chebyshev polynomials. Well-posedness of the discrete problems is established as well as algebraic or even exponential convergence rates depending on the regularities of both arcs and excitations. Our numerical experiments show the robustness of the method with respect to number of arcs and large wavenumber range. Moreover, we present a suitable compression algorithm that further accelerates computational times.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1051/m2an/2020017
Classification : 65R20, 65N22, 65N35, 65N38
Mots-clés : Boundary integral equations, spectral methods, wave scattering problems, screens problems, non-Lipschitz domains
@article{M2AN_2020__54_6_1975_0,
     author = {Jerez-Hanckes, Carlos and Pinto, Jos\'e},
     title = {High-order {Galerkin} method for {Helmholtz} and {Laplace} problems on multiple open arcs},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1975--2009},
     publisher = {EDP-Sciences},
     volume = {54},
     number = {6},
     year = {2020},
     doi = {10.1051/m2an/2020017},
     mrnumber = {4160326},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2020017/}
}
TY  - JOUR
AU  - Jerez-Hanckes, Carlos
AU  - Pinto, José
TI  - High-order Galerkin method for Helmholtz and Laplace problems on multiple open arcs
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2020
SP  - 1975
EP  - 2009
VL  - 54
IS  - 6
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2020017/
DO  - 10.1051/m2an/2020017
LA  - en
ID  - M2AN_2020__54_6_1975_0
ER  - 
%0 Journal Article
%A Jerez-Hanckes, Carlos
%A Pinto, José
%T High-order Galerkin method for Helmholtz and Laplace problems on multiple open arcs
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2020
%P 1975-2009
%V 54
%N 6
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2020017/
%R 10.1051/m2an/2020017
%G en
%F M2AN_2020__54_6_1975_0
Jerez-Hanckes, Carlos; Pinto, José. High-order Galerkin method for Helmholtz and Laplace problems on multiple open arcs. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 6, pp. 1975-2009. doi : 10.1051/m2an/2020017. http://www.numdam.org/articles/10.1051/m2an/2020017/

A.B. Abda, H.B. Ameur and M. Jaoua, Identification of 2D cracks by elastic boundary measurements. Inverse Prob. 15 (1999) 67. | DOI | MR | Zbl

M. Abramowitz and I. Stegun, Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables. Applied Mathematics Series. Dover Publications, Applied Mathematics Series (1965).

S. Andrieux and A.B. Abda, Identification of planar cracks by complete overdetermined data: inversion formulae. Inverse Prob. 12 (1996) 553. | DOI | MR | Zbl

K.E. Atkinson and I.H. Sloan, The numerical solution of first-kind logarithmic-kernel integral equations on smooth open arcs. Math. Comput. 56 (1991) 119–139. | DOI | MR | Zbl

T. Bittencourt, P. Wawrzynek, A. Ingraffea and J. Sousa, Quasi-automatic simulation of crack propagation for 2D LEFM problems. Eng. Fract. Mech. 55 (1996) 321–334. | DOI

O.P. Bruno and S.K. Lintner, Second-kind integral solvers for TE and TM problems of diffraction by open arcs. Radio Sci. 47 (2012) 1–13. | DOI

M. Costabel, Boundary integral operators on lipschitz domains: elementary results. SIAM J. Math. Anal. 19 (1988) 613–626. | DOI | MR | Zbl

M. Costabel and M. Dauge, Crack singularities for general elliptic systems. Math. Nachr. 235 (2002) 29–49. | DOI | MR | Zbl

V. Domínguez, High-order collocation and quadrature methods for some logarithmic kernel integral equations on open arcs. J. Comput. Appl. Math. 161 (2003) 145–159. | DOI | MR | Zbl

M. Feischl, T. Führer, N. Heuer, M. Karkulik and D. Praetorius, Adaptive boundary element methods. Arch. Comput. Methods Eng. 22 (2015) 309–389. | DOI | MR

A. Frenkel, A chebyshev expansion of singular integral equations with a logarithmic kernel. J. Comput. Phys. 51 (1983) 326–334. | DOI | MR | Zbl

M. Ganesh and S.C. Hawkins, An efficient algorithm for simulating scattering by a large number of two dimensional particles. In: Vol. 52 of The ANZIAM Journal. Proceedings of the 15th Biennial Computational Techniques and Applications Conference, CTAC-2010, edited by W. Mclean and A.J. Roberts. (2011) C139–C155. | MR

P. Grisvard, Elliptic Problems in Nonsmooth Domains. In vol. 69 of Classics in Applied Mathematics. SIAM 69 (2011). | MR | Zbl

D.P. Hewett, S. Langdon and S.N. Chandler-Wilde, A frequency-independent boundary element method for scattering by two-dimensional screens and apertures. IMA J. Numer. Anal. 35 (2014) 1698–1728. | DOI | MR

R. Hiptmair, C. Jerez-Hanckes and C. Urzua-Torres, Mesh-independent operator preconditioning for boundary elements on open curves. SIAM J. Numer. Anal. 52 (2014) 2295–2314. | DOI | MR | Zbl

F.Q. Hu, A spectral boundary integral equation method for the 2-D Helmholtz equation. Technical report, Institute for Computer Applications in Science and Engineering, Hampton, VA (1994). | MR | Zbl

C. Jerez-Hanckes, Modeling elastic and electromagnetic surface waves in piezoelectric tranducers and optical waveguides. Ph.D. thesis, École Polytechnique (2008).

C. Jerez-Hanckes and J.-C. Nédélec, Variational forms for the inverses of integral logarithmic operators over an interval. C. R. Math. 349 (2011) 547–552. | DOI | MR | Zbl

C. Jerez-Hanckes and J.-C. Nédélec, Explicit variational forms for the inverses of integral logarithmic operators over an interval. SIAM J. Math. Anal. 44 (2012) 2666–2694. | DOI | MR | Zbl

C. Jerez-Hanckes, J. Pinto and S. Tournier, Local multiple traces formulation for high-frequency scattering problems. Sixth International Conference on Advanced Computational Methods in Engineering (ACOMEN 2014). J. Comput. Appl. Math. 289 (2015) 306–321. | MR

C. Jerez-Hanckes, S. Nicaise and C. Urzúa-Torres, Fast spectral Galerkin method for logarithmic singular equations on a segment. J. Comput. Math. 36 (2018) 128–158. | MR

Y. Jiang and Y. Xu, Fast fourier galerkin methods for solving singular boundary integral equations: numerical integration and precondition. Third International Workshop on Analysis and Numerical Approximation of Singular Problems [IWANASP08]. J. Comput. Appl. Math. 234 (2010) 2792–2807. | MR | Zbl

P.A. Krutitskii, The Dirichlet problem for the two-dimensional Laplace equation in a multiply connected domain with cuts. Proc. Edinburgh Math. Soc. 43 (2000) 325–341. | DOI | MR | Zbl

K. Liew, Y. Cheng and S. Kitipornchai, Analyzing the 2D fracture problems via the enriched boundary element-free method. Int. J. Solids Struct. 44 (2007) 4220–4233. | DOI | Zbl

S. Lintner, High-order integral equation methods for diffraction problems involving screens and apertures. Ph.D. thesis, California Institute of Technology (2012). | MR

W. Mclean, Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press (2000). | MR | Zbl

W. Mclean and O. Steinbach, Boundary element preconditioners for a hypersingular integral equation on an interval. Adv. Comput. Math. 11 (1999) 271–286. | DOI | MR | Zbl

J. Melenk and S. Sauter, Wavenumber explicit convergence analysis for galerkin discretizations of the helmholtz equation. SIAM J. Numer. Anal. 49 (2011) 1210–1243. | DOI | MR | Zbl

J.B. Reade, Asymptotic behaviour of eigen-values of certain integral equations. Proc. Edinburgh Math. Soc. 22 (1979) 137–144. | DOI | MR | Zbl

Y. Saad, Iterative Methods for Sparse Linear Systems. Computer Science Series. PWS Publishing Company (1996). | Zbl

J. Saranen and G. Vainikko, Periodic Integral and Pseudodifferential Equations with Numerical Approximation. Springer Monographs in Mathematics. Springer Berlin Heidelberg (2013).

S. Sauter and C. Schwab, Boundary Element Methods. Springer Series in Computational Mathematics. Springer Berlin Heidelberg (2010). | MR | Zbl

R.M. Slevinsky and S. Olver, A fast and well-conditioned spectral method for singular integral equations. J. Comput. Phys. 332 (2017) 290–315. | DOI | MR

E.P. Stephan and W.L. Wendland, An augmented Galerkin procedure for the boundary integral method applied to two-dimensional screen and crack problems. Appl. Anal. 18 (1984) 183–219. | DOI | MR | Zbl

S. Tanaka, H. Okada, S. Okazawa and M. Fujikubo, Fracture mechanics analysis using the wavelet Galerkin method and extended finite element method. Int. J. Numer. Methods Eng. 93 (2013) 1082–1108. | DOI | MR

S. Tanaka, H. Suzuki, S. Ueda and S. Sannomaru, An extended wavelet Galerkin method with a high-order B-spline for 2D crack problems. Acta Mech. 226 (2015) 2159–2175. | DOI | MR

L. Trefethen, Approximation Theory and Approximation Practice. Other Titles in Applied Mathematics. SIAM (2013). | MR | Zbl

G. Verrall, J. Slavotinek, P. Barnes, G. Fon and A. Spriggins, Clinical risk factors for hamstring muscle strain injury: a prospective study with correlation of injury by magnetic resonance imaging. Br. J. Sports Med. 35 (2001) 435–439. | DOI

T. Von Petersdorff and E.P. Stephan, Regularity of mixed boundary value problems in ℝ3 and boundary element methods on graded meshes. Math. Methods Appl. Sci. 12 (1990) 229–249. | DOI | MR | Zbl

Cité par Sources :