A Γ -convergence result for fluid-filled fracture propagation
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 3, pp. 1003-1023.

In this paper we provide a rigorous asymptotic analysis of a phase-field model used to simulate pressure-driven fracture propagation in poro-elastic media. More precisely, assuming a given pressure p ∈ W 1,∞ (Ω) we show that functionals of the form

E(u )= Ω e(u ):e(u )+p·u +p,u dx+ n-1 (J u ),u GSBD(Ω)L 1 (Ω; n )
can be approximated in terms of Γ-convergence by a sequence of phase-field functionals, which are suitable for numerical simulations. The Γ-convergence result is complemented by a numerical example where the phase-field model is implemented using a Discontinuous Galerkin Discretization.

DOI : 10.1051/m2an/2020016
Classification : 49J45, 74R10, 65N30
Mots-clés : Γ-convergence, phase-field approximation, pressure-driven crack propagation, discontinuous Galerkin method
@article{M2AN_2020__54_3_1003_0,
     author = {Bach, Annika and Sommer, Liesel},
     title = {A $\Gamma$-convergence result for fluid-filled fracture propagation},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1003--1023},
     publisher = {EDP-Sciences},
     volume = {54},
     number = {3},
     year = {2020},
     doi = {10.1051/m2an/2020016},
     mrnumber = {4091854},
     zbl = {1450.49002},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2020016/}
}
TY  - JOUR
AU  - Bach, Annika
AU  - Sommer, Liesel
TI  - A $\Gamma$-convergence result for fluid-filled fracture propagation
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2020
SP  - 1003
EP  - 1023
VL  - 54
IS  - 3
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2020016/
DO  - 10.1051/m2an/2020016
LA  - en
ID  - M2AN_2020__54_3_1003_0
ER  - 
%0 Journal Article
%A Bach, Annika
%A Sommer, Liesel
%T A $\Gamma$-convergence result for fluid-filled fracture propagation
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2020
%P 1003-1023
%V 54
%N 3
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2020016/
%R 10.1051/m2an/2020016
%G en
%F M2AN_2020__54_3_1003_0
Bach, Annika; Sommer, Liesel. A $\Gamma$-convergence result for fluid-filled fracture propagation. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 3, pp. 1003-1023. doi : 10.1051/m2an/2020016. http://www.numdam.org/articles/10.1051/m2an/2020016/

S. Almi , Quasi-static hydraulic crack growth driven by Darcy’s law. Adv. Calc. Var. 11 (2018) 161–191. | DOI | MR

S. Almi , G. Dal Maso and R. Toader , Quasi-static crack growth in hydralic fracture. Nonlinear Anal. 109 (2014) 301–318. | DOI | MR | Zbl

L. Ambrosio and V.M. Tortorelli , Approximation of functionals depending on jumps by elliptic functionals via Γ -convergence. Commun. Pure Appl. Math. 43 (1990) 999–1036. | DOI | MR | Zbl

L. Ambrosio and V.M. Tortorelli , On the approximation of free discontinuity problems. Boll. Unione. Mat. Ital. 6 (1992) 105–123. | MR | Zbl

L. Ambrosio , A. Coscia and G. Dal Maso , Fine properties of functions with bounded deformation. Arch. Ration. Mech. Anal. 139 (1997) 201–238. | DOI | MR | Zbl

L. Ambrosio , N. Fusco and D. Pallara , Functions of Bounded Variation and Free Discontinuity Problems. Oxford Math. Monogr. Clarendon Press, New York (2000). | MR | Zbl

A. Bach , A. Braides and C. Zeppieri , Quantitative analysis of finite-difference approximations of free-discontinuity problems Preprint arXiv:1802.05346 (2018) . | MR

P. Bastian , M. Blatt , A. Dedner , C. Engwer , R. Klöfkorn , R. Kornhuber , M. Ohlberger and O. Sander , A generic grid interface for parallel and adaptive scientific computing. Part II: implementation and tests in DUNE. Computing 82 (2008) 121–138. | DOI | MR | Zbl

G. Bellettini and A. Coscia , Discrete approximation of a free discontinuity problem. Numer. Funct. Anal. Optim. 15 (1994) 201–224. | DOI | MR | Zbl

G. Bellettini , A. Coscia and G. Dal Maso , Compactness and lower semicontinuity properties in S B D ( Ω ) . Math. Z. 228 (1998) 337–351. | DOI | MR | Zbl

M.A. Biot , Theory of elasticity and consolidation for a porous anisotropic solid. J. Appl. Phys. 26 (1955) 182–185. | DOI | MR | Zbl

M.J. Borden , C.V. Verhoosel , M.A. Scott , T.J.R. Hughes and C.M. Landis , A phase-field description of dynamic brittle fracture. Comput. Methods Appl. Mech. Eng. 217–220 (2012) 77–95. | DOI | MR | Zbl

B. Bourdin , G.A. Francfort and J.-J. Marigo , Numerical experiments in revisited brittle fracture. J. Mech. Phys. Solids 48 (2000) 797–826. | DOI | MR | Zbl

B. Bourdin , C. Chukwudozie and K. Yoshioka , A Variational Approach to the Numerical Simulation of Hydraulic Fracturing. Society of Petroleum Engineers (2012).

B. Bourdin , C. Chukwudozie and K. Yoshioka , A variational approach to the modeling and numerical simulation of hydraulic fracturing under in-situ stresses.In: Proceedings of the 38th Workshop on Geothermal Reservoir Engineering . Stanford Geothermal Program Stanford, Calif (2013).

A. Braides , Approximation of Free-discontinuity Problems. Lecture Notes in Mathematics . Springer Verlag, Berlin (1998). | DOI | MR | Zbl

A. Braides , Γ -convergence for beginners. In: Vol. 22 of Oxford Lecture Series in Mathematics and its Applications . Oxford University Press, Oxford (2002). | MR | Zbl

A. Chambolle , An approximation result for special functions with bounded deformation. J. Math. Pures Appl. 83 (2004) 929–954. | DOI | MR | Zbl

A. Chambolle , Addendum to: “An approximation result for special functions with bounded deformation” [J. Math. Pures Appl. 83 (2004) 929–954; MR2074682]. J. Math. Pures Appl. 84 (2005) 137–145. | DOI | MR | Zbl

A. Chambolle and V. Crismale , Compactness and lower semicontinuity in G S B D . J. Eur. Math. Soc. (JEMS) Preprint arXiv:1802.03302v2 (2018). | MR

A. Chambolle and V. Crismale , A density result in G S B D p with applications to the approximation of brittle fracture energies . Arch. Ration. Mech. Anal. 232 (2019) 1329–1378. | DOI | MR

P.G. Ciarlet , The finite-element method for elliptic problems. In: Classics in Applied Mathematics . SIAM, Philadelphia (2002). | MR | Zbl

V. Crismale , G. Scilla and F. Solombrino , A derivation of Griffith functionals from discrete finite-difference models. Available online at http://cvgmt.sns.it/paper/4554/ (2019). | MR

G. Dal Maso , An introduction to Γ -convergence. In: Vol. 8 of Progress in Nonlinear Differential Equations and Their Applications . Birkhäuser, Boston (1993). | MR | Zbl

G. Dal Maso , Generalised functions of bounded deformation. J. Eur. Math. Soc. (JEMS) 15 (2013) 1943–1997. | DOI | MR | Zbl

E. De Giorgi and T. Franzoni , Su un tipo di convergenza variazionale. Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. 58 (1975) 842–850. | MR | Zbl

C. Engwer and L. Schumacher , A phase field approach to pressurized fractures using discontinuous Galerkin methods. Math. Comput. Simul. 137 (2017) 266–285. | DOI | MR

M. Focardi , On the variational approximation of free-discontinuity problems in the vectorial case. Math. Models Methods Appl. Sci. 11 (2001) 663–684. | DOI | MR | Zbl

M. Focardi and F. Iurlano , Asymptotic analysis of Ambrosio-Tortorelli energies in linearized elasticity. SIAM J. Math. Anal. 46 (2014) 2936–2955. | DOI | MR | Zbl

G.A. Francfort and J.-J. Marigo , Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46 (1998) 1319–1342. | DOI | MR | Zbl

M. Friedrich and F. Solombrino , Quasistatic crack growth in 2d-linearized elasticity. Ann. Inst. Henri Poincaré C, Anal. non lin. 35 (2018) 27–64. | DOI | Numdam | MR

C. Gräser , U. Sack and O. Sander , Truncated nonsmooth Newton multigrid methods for convex minimization problems. In: Domain Decomposition Methods in Science and Engineering XVIII . Springer (2009) 129–136. | DOI | MR | Zbl

A.A. Griffith , The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. London Ser. A 221 (1920) 163–198.

F. Iurlano , A density result for GSBD and its application to the approximation of brittle fracture energies. Calc. Var. Partial Differ. Equ. 51 (2014) 315–342. | DOI | MR | Zbl

C. Kuhn and. R. Müller , A continuum phase field model for fracture. Eng. Fract. Mech. 77 (2010) 3625–3634. Computational Mechanics in Fracture and Damage: A Special Issue in Honor of Prof. Gross. | DOI

C. Miehe , M. Hofacker and F. Welschinger , A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Comput. Methods Appl. Mech. Eng. 199 (2010) 2765–2778. | DOI | MR | Zbl

A. Mikelic , M.F. Wheeler and T. Wick , A phase-field method for propagating fluid-filled fractures coupled to a surrounding porous medium. Multiscale Model. Simul. 13 (2015) 367–398. | DOI | MR

A. Mikelić , M.F. Wheeler and T. Wick , A quasi-static phase-field approach to pressurized fractures. Nonlinearity 28 (2015) 1371–1399. | DOI | MR

D. Mumford and J. Shah , Optimal approximation by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42 (1989) 577–685. | DOI | MR | Zbl

I.N. Sneddon , The distribution of stress in the neighbourhood of a crack in an elastic solid. Proc. R. Soc. Lond. A Math. Phys. Sci. 187 (1946) 229–260. | MR

R. Temam and G. Strang , Functions of bounded deformation. Arch. Ration. Mech. Anal. 75 (1980) 7–21. | DOI | MR | Zbl

M.F. Wheeler , T. Wick and W. Wollner , An augmented-Lagrangian method for the phase-field approach for pressurized fractures. Comput. Methods Appl. Mech. Eng. 271 (2014) 69–85. | DOI | MR | Zbl

Cité par Sources :