PDE eigenvalue iterations with applications in two-dimensional photonic crystals
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 5, pp. 1751-1776.

We consider PDE eigenvalue problems as they occur in two-dimensional photonic crystal modeling. If the permittivity of the material is frequency-dependent, then the eigenvalue problem becomes nonlinear. In the lossless case, linearization techniques allow an equivalent reformulation as an extended but linear and Hermitian eigenvalue problem, which satisfies a Gårding inequality. For this, known iterative schemes for the matrix case such as the inverse power or the Arnoldi method are extended to the infinite-dimensional case. We prove convergence of the inverse power method on operator level and consider its combination with adaptive mesh refinement, leading to substantial computational speed-ups. For more general photonic crystals, which are described by the Drude–Lorentz model, we propose the direct application of a Newton-type iteration. Assuming some a priori knowledge on the eigenpair of interest, we prove local quadratic convergence of the method. Finally, numerical experiments confirm the theoretical findings of the paper.

DOI : 10.1051/m2an/2020014
Classification : 65N25, 65J10, 65F15
Mots-clés : Nonlinear eigenvalue problem, photonic crystals, inverse power method, Newton iteration
@article{M2AN_2020__54_5_1751_0,
     author = {Altmann, Robert and Froidevaux, Marine},
     title = {PDE eigenvalue iterations with applications in two-dimensional photonic crystals},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1751--1776},
     publisher = {EDP-Sciences},
     volume = {54},
     number = {5},
     year = {2020},
     doi = {10.1051/m2an/2020014},
     mrnumber = {4126311},
     zbl = {1480.65323},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2020014/}
}
TY  - JOUR
AU  - Altmann, Robert
AU  - Froidevaux, Marine
TI  - PDE eigenvalue iterations with applications in two-dimensional photonic crystals
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2020
SP  - 1751
EP  - 1776
VL  - 54
IS  - 5
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2020014/
DO  - 10.1051/m2an/2020014
LA  - en
ID  - M2AN_2020__54_5_1751_0
ER  - 
%0 Journal Article
%A Altmann, Robert
%A Froidevaux, Marine
%T PDE eigenvalue iterations with applications in two-dimensional photonic crystals
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2020
%P 1751-1776
%V 54
%N 5
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2020014/
%R 10.1051/m2an/2020014
%G en
%F M2AN_2020__54_5_1751_0
Altmann, Robert; Froidevaux, Marine. PDE eigenvalue iterations with applications in two-dimensional photonic crystals. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 5, pp. 1751-1776. doi : 10.1051/m2an/2020014. http://www.numdam.org/articles/10.1051/m2an/2020014/

[1] G. Allaire and S.M. Kaber, Numerical Linear Algebra. Springer, New York (2008). | MR | Zbl

[2] R. Altmann, P. Henning and D. Peterseim, Quantitative Anderson localization of Schrödinger eigenstates under disorder potentials. Math. Models Methods Appl. Sci. (M3AS). 30 (2020) 917–955. | DOI | MR | Zbl

[3] R. Altmann, P. Henning and D. Peterseim, The J-method for the Gross-Pitaevskii eigenvalue problem. Preprint (2019). | arXiv | MR

[4] P.M. Anselone and L.B. Rall, The solution of characteristic value-vector problems by Newton’s method. Numer. Math. 11 (1968) 38–45. | DOI | MR | Zbl

[5] K.-J. Bathe and E.L. Wilson, Solution methods for eigenvalue problems in structural mechanics. Int. J. Numer. Methods Eng. 6 (1973) 213–226. | DOI | Zbl

[6] F. Bozorgnia, Convergence of inverse power method for first eigenvalue of p -Laplace operator. Numer. Funct. Anal. Optim. 37 (2016) 1378–1384. | DOI | MR | Zbl

[7] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, New York (2010). | MR | Zbl

[8] S. Burger, R. Klose, A. Schädle, F. Schmidt and L. Zschiedrich, Adaptive FEM solver for the computation of electromagnetic eigenmodes in 3D photonic crystal structures. In: Scientific Computing in Electrical Engineering, edited by A.M. Anile, G. Ali and G. Mascali. Springer, Berlin, Heidelberg (2006) 169–173. | DOI | Zbl

[9] Concepts Development Team, Webpage of Numerical C++ Library Concepts. Available from www.concepts.math.ethz.ch (2019).

[10] R. Courant, Über die Eigenwerte bei den Differentialgleichungen der mathematischen Physik. Math. Z. 7 (1920) 1–57. | DOI | JFM | MR

[11] G. Demesy and S. John, Solar energy trapping with modulated silicon nanowire photonic crystals. J. Appl. Phys. 112 (2012) 074326. | DOI

[12] P. Deuflhard, Newton Methods for Nonlinear Problems: Affine Invariance and Adaptive Algorithms. Springer-Verlag Berlin Heidelberg (2004). | MR | Zbl

[13] W. Dörfler, A. Lechleiter, M. Plum, G. Schneider and C. Wieners, Photonic Crystals. Mathematical Analysis and Numerical Approximation, Springer-Verlag, Berlin (2011). | DOI | Zbl

[14] S. Eastman and D. Estep, A power method for nonlinear operators. Appl. Anal. 86 (2007) 1303–1314. | DOI | MR | Zbl

[15] C. Effenberger, Robust solution methods for nonlinear eigenvalue problems. Ph.D. thesis, EPFL, Lausanne (2013).

[16] C. Effenberger, D. Kressner and C. Engström, Linearization techniques for band structure calculations in absorbing photonic crystals. Int. J. Numer. Methods Eng. 89 (2012) 180–191. | DOI | MR | Zbl

[17] C. Engström, On the spectrum of a holomorphic operator-valued function with applications to absorptive photonic crystals. Math. Models Methods Appl. Sci. (M3AS) 20 (2010) 1319–1341. | DOI | MR | Zbl

[18] M.A. Erickson, R.S. Smith and A.J. Laub, Power methods for calculating eigenvalues and eigenvectors of spectral operators on Hilbert spaces. Int. J. Control 62 (1995) 1117–1128. | DOI | MR | Zbl

[19] P. Frauenfelder and C. Lage, Concepts – an object-oriented software package for partial differential equations. ESAIM: M2AN 36 (2002) 937–951. | DOI | Numdam | MR | Zbl

[20] M. Garcia-Vergara, G. Demésy and F. Zolla, Extracting an accurate model for permittivity from experimental data: hunting complex poles from the real line. Opt. Lett. 42 (2017) 1145–1148. | DOI

[21] S. Giani and I.G. Graham, Adaptive finite element methods for computing band gaps in photonic crystals. Numer. Math. 121 (2012) 31–64. | DOI | MR | Zbl

[22] Q. Gong and X. Hu editors, Photonic Crystals: Principles and Applications. CRC Press, Boca Raton, FL (2014). | DOI

[23] A. Günnel, R. Herzog and E. Sachs, A note on preconditioners and scalar products in Krylov subspace methods for self-adjoint problems in Hilbert space. Electron. Trans. Numer. Anal. 41 (2014) 13–20. | MR | Zbl

[24] T.-M. Huang, W.-W. Lin and V. Mehrmann, A Newton-type method with nonequivalence deflation for nonlinear eigenvalue problems arising in photonic crystal modeling. SIAM J. Sci. Comput. 38 (2016) B191–B218. | DOI | MR | Zbl

[25] J.D. Jackson, Classical Electrodynamics, 3rd edition. John Wiley & Sons, New York (1999). | MR | Zbl

[26] E. Jarlebring, W. Michiels and K. Meerbergen, A linear eigenvalue algorithm for the nonlinear eigenvalue problem. Numer. Math. 122 (2012) 169–195. | DOI | MR | Zbl

[27] J.D. Joannopoulos, S.G. Johnson, J.N. Winn and R.D. Meade, Photonic Crystals: Molding the Flow of Light. Princeton University Press, Princeton, NJ (2008). | Zbl

[28] S. John, Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58 (1987) 2486–2489. | DOI

[29] S. John, Why trap light? Nat. Mater. 11 (2012) 997–999. | DOI

[30] D. Kressner, A block Newton method for nonlinear eigenvalue problems. Numer. Math. 114 (2009) 355–372. | DOI | MR | Zbl

[31] P. Kuchment, The mathematics of photonic crystals. In: Mathematical Modeling in Optical Science. SIAM, Philadelphia, PA (2001) 207–272. | DOI | MR | Zbl

[32] J. López-Gómez and C. Mora-Corral, Algebraic Multiplicity of Eigenvalues of Linear Operators. Birkhäuser Verlag, Basel (2007). | MR | Zbl

[33] M. Luo and Q.H. Liu, Three-dimensional dispersive metallic photonic crystals with a bandgap and a high cutoff frequency. J. Opt. Soc. Am. A 27 (2010) 1878–1884. | DOI

[34] V. Mehrmann and A. Miedlar, Adaptive computation of smallest eigenvalues of self-adjoint elliptic partial differential equations. Numer. Linear Algebr. 18 (2011) 387–409. | DOI | MR | Zbl

[35] V. Mehrmann and H. Voss, Nonlinear eigenvalue problems: a challenge for modern eigenvalue methods. GAMM-Mitt. 27 (2004) 121–152. | DOI | MR | Zbl

[36] A. Miedlar, Inexact adaptive finite element methods for elliptic PDE eigenvalue problems. Ph.D. thesis, Technische Universität Berlin (2011).

[37] M.R. Osborne, A new method for the solution of eigenvalue problems. Comput. J. 7 (1964) 228–232. | DOI | MR | Zbl

[38] L.P. Pitaevskii and S. Stringari, Bose-Einstein Condensation. The Clarendon Press, Oxford University Press, Oxford (2003). | MR | Zbl

[39] A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations. Springer, Berlin (1994). | DOI | MR | Zbl

[40] A. Raman and S. Fan, Perturbation theory for plasmonic modulation and sensing. Phys. Rev. B 83 (2011) 205131. | DOI

[41] Y. Saad, Numerical Methods for Large Eigenvalue Problems. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2011). | DOI | MR | Zbl

[42] K. Schmidt and R. Kappeler, Efficient computation of photonic crystal waveguide modes with dispersive material. Opt. Express 18 (2010) 7307–7322. | DOI

[43] K. Schmidt and P. Kauf, Computation of the band structure of two-dimensional photonic crystals with h p –finite elements. Comput. Methods Appl. Mech. Eng. 198 (2009) 1249–1259. | DOI | MR | Zbl

[44] K. Schreiber, Nonlinear eigenvalue problems: Newton-type methods and nonlinear Rayleigh functionals. Ph.D. thesis, Technische Universität Berlin (2008). | Zbl

[45] P. Schulze, B. Unger, C. Beattie and S. Gugercin, Data-driven structured realization. Linear Algebr. Appl. 537 (2018) 250–286. | DOI | MR | Zbl

[46] A. Spence and C. Poulton, Photonic band structure calculations using nonlinear eigenvalue techniques. J. Comput. Phys. 204 (2005) 65–81. | DOI | MR | Zbl

[47] Y. Su and Z. Bai, Solving rational eigenvalue problems via linearization. SIAM J. Matrix Anal. Appl. 32 (2011) 201–216. | DOI | MR | Zbl

[48] K. Tsakmadis, In the limelight. Nat. Mater. 11 (2012) 1000–1001. | DOI

[49] H. Voss, A rational spectral problem in fluid–solid vibration. Electron. Trans. Numer. Anal. 16 (2003) 93–105. | MR | Zbl

[50] A. Weinstein and W. Stenger, Methods of Intermediate Problems for Eigenvalues. Academic Press, New York, London (1972). | MR | Zbl

[51] J. Wloka, Partial Differential Equations. Cambridge University Press, Cambridge (1987). | MR | Zbl

[52] E. Zeidler, Nonlinear Functional Analysis and its Applications II/A: Linear Monotone Operators, Springer-Verlag, New York, 1990. | Zbl

Cité par Sources :