We consider PDE eigenvalue problems as they occur in two-dimensional photonic crystal modeling. If the permittivity of the material is frequency-dependent, then the eigenvalue problem becomes nonlinear. In the lossless case, linearization techniques allow an equivalent reformulation as an extended but linear and Hermitian eigenvalue problem, which satisfies a Gårding inequality. For this, known iterative schemes for the matrix case such as the inverse power or the Arnoldi method are extended to the infinite-dimensional case. We prove convergence of the inverse power method on operator level and consider its combination with adaptive mesh refinement, leading to substantial computational speed-ups. For more general photonic crystals, which are described by the Drude–Lorentz model, we propose the direct application of a Newton-type iteration. Assuming some a priori knowledge on the eigenpair of interest, we prove local quadratic convergence of the method. Finally, numerical experiments confirm the theoretical findings of the paper.
Mots-clés : Nonlinear eigenvalue problem, photonic crystals, inverse power method, Newton iteration
@article{M2AN_2020__54_5_1751_0, author = {Altmann, Robert and Froidevaux, Marine}, title = {PDE eigenvalue iterations with applications in two-dimensional photonic crystals}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1751--1776}, publisher = {EDP-Sciences}, volume = {54}, number = {5}, year = {2020}, doi = {10.1051/m2an/2020014}, mrnumber = {4126311}, zbl = {1480.65323}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2020014/} }
TY - JOUR AU - Altmann, Robert AU - Froidevaux, Marine TI - PDE eigenvalue iterations with applications in two-dimensional photonic crystals JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2020 SP - 1751 EP - 1776 VL - 54 IS - 5 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2020014/ DO - 10.1051/m2an/2020014 LA - en ID - M2AN_2020__54_5_1751_0 ER -
%0 Journal Article %A Altmann, Robert %A Froidevaux, Marine %T PDE eigenvalue iterations with applications in two-dimensional photonic crystals %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2020 %P 1751-1776 %V 54 %N 5 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2020014/ %R 10.1051/m2an/2020014 %G en %F M2AN_2020__54_5_1751_0
Altmann, Robert; Froidevaux, Marine. PDE eigenvalue iterations with applications in two-dimensional photonic crystals. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 5, pp. 1751-1776. doi : 10.1051/m2an/2020014. http://www.numdam.org/articles/10.1051/m2an/2020014/
[1] Numerical Linear Algebra. Springer, New York (2008). | MR | Zbl
and ,[2] Quantitative Anderson localization of Schrödinger eigenstates under disorder potentials. Math. Models Methods Appl. Sci. (M3AS). 30 (2020) 917–955. | DOI | MR | Zbl
, and ,[3] The J-method for the Gross-Pitaevskii eigenvalue problem. Preprint (2019). | arXiv | MR
, and ,[4] The solution of characteristic value-vector problems by Newton’s method. Numer. Math. 11 (1968) 38–45. | DOI | MR | Zbl
and ,[5] Solution methods for eigenvalue problems in structural mechanics. Int. J. Numer. Methods Eng. 6 (1973) 213–226. | DOI | Zbl
and ,[6] Convergence of inverse power method for first eigenvalue of -Laplace operator. Numer. Funct. Anal. Optim. 37 (2016) 1378–1384. | DOI | MR | Zbl
,[7] Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, New York (2010). | MR | Zbl
,[8] Adaptive FEM solver for the computation of electromagnetic eigenmodes in 3D photonic crystal structures. In: Scientific Computing in Electrical Engineering, edited by , and . Springer, Berlin, Heidelberg (2006) 169–173. | DOI | Zbl
, , , and ,[9] Concepts Development Team, Webpage of Numerical C++ Library Concepts. Available from www.concepts.math.ethz.ch (2019).
[10] Über die Eigenwerte bei den Differentialgleichungen der mathematischen Physik. Math. Z. 7 (1920) 1–57. | DOI | JFM | MR
,[11] Solar energy trapping with modulated silicon nanowire photonic crystals. J. Appl. Phys. 112 (2012) 074326. | DOI
and ,[12] Newton Methods for Nonlinear Problems: Affine Invariance and Adaptive Algorithms. Springer-Verlag Berlin Heidelberg (2004). | MR | Zbl
,[13] Photonic Crystals. Mathematical Analysis and Numerical Approximation, Springer-Verlag, Berlin (2011). | DOI | Zbl
, , , and ,[14] A power method for nonlinear operators. Appl. Anal. 86 (2007) 1303–1314. | DOI | MR | Zbl
and ,[15] Robust solution methods for nonlinear eigenvalue problems. Ph.D. thesis, EPFL, Lausanne (2013).
,[16] Linearization techniques for band structure calculations in absorbing photonic crystals. Int. J. Numer. Methods Eng. 89 (2012) 180–191. | DOI | MR | Zbl
, and ,[17] On the spectrum of a holomorphic operator-valued function with applications to absorptive photonic crystals. Math. Models Methods Appl. Sci. (M3AS) 20 (2010) 1319–1341. | DOI | MR | Zbl
,[18] Power methods for calculating eigenvalues and eigenvectors of spectral operators on Hilbert spaces. Int. J. Control 62 (1995) 1117–1128. | DOI | MR | Zbl
, and ,[19] Concepts – an object-oriented software package for partial differential equations. ESAIM: M2AN 36 (2002) 937–951. | DOI | Numdam | MR | Zbl
and ,[20] Extracting an accurate model for permittivity from experimental data: hunting complex poles from the real line. Opt. Lett. 42 (2017) 1145–1148. | DOI
, and ,[21] Adaptive finite element methods for computing band gaps in photonic crystals. Numer. Math. 121 (2012) 31–64. | DOI | MR | Zbl
and ,[22] Photonic Crystals: Principles and Applications. CRC Press, Boca Raton, FL (2014). | DOI
and editors,[23] A note on preconditioners and scalar products in Krylov subspace methods for self-adjoint problems in Hilbert space. Electron. Trans. Numer. Anal. 41 (2014) 13–20. | MR | Zbl
, and ,[24] A Newton-type method with nonequivalence deflation for nonlinear eigenvalue problems arising in photonic crystal modeling. SIAM J. Sci. Comput. 38 (2016) B191–B218. | DOI | MR | Zbl
, and ,[25] Classical Electrodynamics, 3rd edition. John Wiley & Sons, New York (1999). | MR | Zbl
,[26] A linear eigenvalue algorithm for the nonlinear eigenvalue problem. Numer. Math. 122 (2012) 169–195. | DOI | MR | Zbl
, and ,[27] Photonic Crystals: Molding the Flow of Light. Princeton University Press, Princeton, NJ (2008). | Zbl
, , and ,[28] Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58 (1987) 2486–2489. | DOI
,[29] Why trap light? Nat. Mater. 11 (2012) 997–999. | DOI
,[30] A block Newton method for nonlinear eigenvalue problems. Numer. Math. 114 (2009) 355–372. | DOI | MR | Zbl
,[31] The mathematics of photonic crystals. In: Mathematical Modeling in Optical Science. SIAM, Philadelphia, PA (2001) 207–272. | DOI | MR | Zbl
,[32] Algebraic Multiplicity of Eigenvalues of Linear Operators. Birkhäuser Verlag, Basel (2007). | MR | Zbl
and ,[33] Three-dimensional dispersive metallic photonic crystals with a bandgap and a high cutoff frequency. J. Opt. Soc. Am. A 27 (2010) 1878–1884. | DOI
and ,[34] Adaptive computation of smallest eigenvalues of self-adjoint elliptic partial differential equations. Numer. Linear Algebr. 18 (2011) 387–409. | DOI | MR | Zbl
and ,[35] Nonlinear eigenvalue problems: a challenge for modern eigenvalue methods. GAMM-Mitt. 27 (2004) 121–152. | DOI | MR | Zbl
and ,[36] Inexact adaptive finite element methods for elliptic PDE eigenvalue problems. Ph.D. thesis, Technische Universität Berlin (2011).
,[37] A new method for the solution of eigenvalue problems. Comput. J. 7 (1964) 228–232. | DOI | MR | Zbl
,[38] Bose-Einstein Condensation. The Clarendon Press, Oxford University Press, Oxford (2003). | MR | Zbl
and ,[39] Numerical Approximation of Partial Differential Equations. Springer, Berlin (1994). | DOI | MR | Zbl
and ,[40] Perturbation theory for plasmonic modulation and sensing. Phys. Rev. B 83 (2011) 205131. | DOI
and ,[41] Numerical Methods for Large Eigenvalue Problems. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2011). | DOI | MR | Zbl
,[42] Efficient computation of photonic crystal waveguide modes with dispersive material. Opt. Express 18 (2010) 7307–7322. | DOI
and ,[43] Computation of the band structure of two-dimensional photonic crystals with –finite elements. Comput. Methods Appl. Mech. Eng. 198 (2009) 1249–1259. | DOI | MR | Zbl
and ,[44] Nonlinear eigenvalue problems: Newton-type methods and nonlinear Rayleigh functionals. Ph.D. thesis, Technische Universität Berlin (2008). | Zbl
,[45] Data-driven structured realization. Linear Algebr. Appl. 537 (2018) 250–286. | DOI | MR | Zbl
, , and ,[46] Photonic band structure calculations using nonlinear eigenvalue techniques. J. Comput. Phys. 204 (2005) 65–81. | DOI | MR | Zbl
and ,[47] Solving rational eigenvalue problems via linearization. SIAM J. Matrix Anal. Appl. 32 (2011) 201–216. | DOI | MR | Zbl
and ,[48] In the limelight. Nat. Mater. 11 (2012) 1000–1001. | DOI
,[49] A rational spectral problem in fluid–solid vibration. Electron. Trans. Numer. Anal. 16 (2003) 93–105. | MR | Zbl
,[50] Methods of Intermediate Problems for Eigenvalues. Academic Press, New York, London (1972). | MR | Zbl
and ,[51] Partial Differential Equations. Cambridge University Press, Cambridge (1987). | MR | Zbl
,[52] Nonlinear Functional Analysis and its Applications II/A: Linear Monotone Operators, Springer-Verlag, New York, 1990. | Zbl
,Cité par Sources :