Weak convergence of fully discrete finite element approximations of semilinear hyperbolic SPDE with additive noise
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 6, pp. 2199-2227.

The numerical approximation of the mild solution to a semilinear stochastic wave equation driven by additive noise is considered. A standard finite element method is employed for the spatial approximation and a a rational approximation of the exponential function for the temporal approximation. First, strong convergence of this approximation in both positive and negative order norms is proven. With the help of Malliavin calculus techniques this result is then used to deduce weak convergence rates for the class of twice continuously differentiable test functions with polynomially bounded derivatives. Under appropriate assumptions on the parameters of the equation, the weak rate is found to be essentially twice the strong rate. This extends earlier work by one of the authors to the semilinear setting. Numerical simulations illustrate the theoretical results.

DOI : 10.1051/m2an/2020012
Classification : 60H15, 65M12, 0H35, 65C30, 65M60, 60H07
Mots-clés : Stochastic partial differential equations, stochastic wave equations, stochastic hyperbolic equations, weak convergence, finite element methods, Galerkin methods, rational approximations of semigroups, Crank–Nicolson method, Malliavin calculus
@article{M2AN_2020__54_6_2199_0,
     author = {Kov\'acs, Mih\'aly and Lang, Annika and Petersson, Andreas},
     title = {Weak convergence of fully discrete finite element approximations of semilinear hyperbolic {SPDE} with additive noise},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {2199--2227},
     publisher = {EDP-Sciences},
     volume = {54},
     number = {6},
     year = {2020},
     doi = {10.1051/m2an/2020012},
     mrnumber = {4169691},
     zbl = {1466.60130},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2020012/}
}
TY  - JOUR
AU  - Kovács, Mihály
AU  - Lang, Annika
AU  - Petersson, Andreas
TI  - Weak convergence of fully discrete finite element approximations of semilinear hyperbolic SPDE with additive noise
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2020
SP  - 2199
EP  - 2227
VL  - 54
IS  - 6
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2020012/
DO  - 10.1051/m2an/2020012
LA  - en
ID  - M2AN_2020__54_6_2199_0
ER  - 
%0 Journal Article
%A Kovács, Mihály
%A Lang, Annika
%A Petersson, Andreas
%T Weak convergence of fully discrete finite element approximations of semilinear hyperbolic SPDE with additive noise
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2020
%P 2199-2227
%V 54
%N 6
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2020012/
%R 10.1051/m2an/2020012
%G en
%F M2AN_2020__54_6_2199_0
Kovács, Mihály; Lang, Annika; Petersson, Andreas. Weak convergence of fully discrete finite element approximations of semilinear hyperbolic SPDE with additive noise. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 6, pp. 2199-2227. doi : 10.1051/m2an/2020012. http://www.numdam.org/articles/10.1051/m2an/2020012/

[1] A. Ambrosetti and G. Prodi, A primer of nonlinear analysis. In: Vol. 34 of Cambridge Studies in Advanced Mathematics. Corrected reprint of the 1993 original. Cambridge University Press, Cambridge (1995). | MR | Zbl

[2] A. Andersson, R. Kruse and S. Larsson, Duality in refined Sobolev-Malliavin spaces and weak approximation of SPDE. Stoch. Partial Differ. Equ. Anal. Comput. 4 (2016) 113–149. | MR | Zbl

[3] R. Anton, D. Cohen, S. Larsson and X. Wang, Full discretization of semilinear stochastic wave equations driven by multiplicative noise. SIAM J. Numer. Anal. 54 (2016) 1093–1119. | DOI | MR | Zbl

[4] G.A. Baker and J.H. Bramble, Semidiscrete and single step fully discrete approximations for second order hyperbolic equations. RAIRO Anal. Numér. 13 (1979) 75–100. | DOI | Numdam | MR | Zbl

[5] D. Blömker, Nonhomogeneous noise and Q -Wiener processes on bounded domains. Stoch. Anal. Appl. 23 (2005) 255–273. | DOI | MR | Zbl

[6] D. Bolin, K. Kirchner and M. Kovács, Numerical solution of fractional elliptic stochastic PDEs with spatial white noise. IMA J. Numer. Anal. 12 (2018). | MR

[7] Y. Cao and L. Yin, Spectral Galerkin method for stochastic wave equations driven by space-time white noise. Commun. Pure Appl. Math. 6 (2007) 607–617. | MR | Zbl

[8] D. Cohen and L. Quer-Sardanyons, A fully discrete approximation of the one-dimensional stochastic wave equation. IMA J. Numer. Anal. 36 (2015) 400–420. | MR | Zbl

[9] D. Cohen, S. Larsson and M. Sigg, A trigonometric method for the linear stochastic wave equation. SIAM J. Numer. Anal. 51 (2013) 204–222. | DOI | MR | Zbl

[10] S. Cox, A. Jentzen and F. Lindner, Weak convergence rates for temporal numerical approximations of stochastic wave equations with multiplicative noise. Preprint (2019). | arXiv

[11] G. Da Prato and J. Zabczyk, Stochastic equations in infinite dimensions. In: Vol. 44 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (1992). | MR | Zbl

[12] G. Da Prato and J. Zabczyk, Stochastic equations in infinite Dimensions. In: Vol. 152 of Encyclopedia of Mathematics and its Applications. 2nd edition. Cambridge University Press, Cambridge (2014). | MR | Zbl

[13] R.C. Dalang, The stochastic wave equation. In: A Minicourse on Stochastic Partial Differential Equations, edited D. Khoshnevisan and F. Rassoul-Agha. Springer, Berlin Heidelberg (2009) 39–71. | DOI | MR | Zbl

[14] E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhikers guide to the fractional Sobolev spaces. Bull. Sci. Math. 136 (2012) 521–573. | DOI | MR | Zbl

[15] R.D. Grigorieff, Diskrete approximation von eigenwertproblemen. Numer. Math. 25 (1975) 79–97. | DOI | MR | Zbl

[16] E. Hausenblas, Weak approximation of the stochastic wave equation. J. Comput. Appl. Math. 235 (2010) 33–58. | DOI | MR | Zbl

[17] L.J. De Naurois, A. Jentzen and T. Welti, Weak convergence rates for spatial spectral Galerkin approximations of semilinear stochastic wave equations with multiplicative noise. Preprint (2015). | arXiv | MR

[18] M. Kovács, S. Larsson and F. Lindgren, Weak convergence of finite element approximations of linear stochastic evolution equations with additive noise. BIT Numer. Math. 52 (2012) 85–108. | DOI | MR | Zbl

[19] M. Kovács, S. Larsson and F. Lindgren, Weak convergence of finite element approximations of linear stochastic evolution equations with additive noise II. Fully discrete schemes. BIT Numer. Math. 413 (2013) 497. | MR | Zbl

[20] M. Kovács, F. Lindner and R.L. Schilling, Weak convergence of finite element approximations of linear stochastic evolution equations with additive Lévy noise. SIAM-ASA J. Uncertainty Quantif. 3 (2015) 1159–1199. | DOI | MR | Zbl

[21] R. Kruse, Strong and weak approximation of semilinear stochastic evolution equations. In: Vol. 2093 of Lecture Notes in Mathematics. Springer (2014). | DOI | MR | Zbl

[22] F. Lindgren, On weak and strong convergence of numerical approximations of stochastic partial differential equations. Ph.D. thesis, Chalmers University of Technology (2012). | MR

[23] D. Nualart, The Malliavin calculus and related topics, 2nd edition. In: Probability and its Applications (New York). Springer-Verlag, Berlin (2006). | MR | Zbl

[24] C. Prévôt and M. Röckner, A Concise course on stochastic partial differential equations. In: Vol. 1905 of Lecture Notes in Mathematics. Springer, Berlin (2007). | MR | Zbl

[25] L. Quer-Sardanyons and M. Sanz-Solé, Space semi-discretisations for a stochastic wave equation. Potential Anal. 24 (2006) 303–332. | DOI | MR | Zbl

[26] V. Thomée, Galerkin Finite Element Methods for Parabolic Problems, seconnd edition. In: Vol. 25 of Springer Series in Computational Mathematics. Springer (2006). | MR | Zbl

[27] J.B. Walsh, On numerical solutions of the stochastic wave equation. Illinois J. Math. 50 (2006) 991–1018. | DOI | MR | Zbl

[28] X. Wang, An exponential integrator scheme for time discretization of nonlinear stochastic wave equation. J. Sci. Comput. 64 (2015) 234–263. | DOI | MR | Zbl

[29] X. Wang, S. Gan and J. Tang, Higher order strong approximations of semilinear stochastic wave equation with additive space-time white noise. SIAM J. Sci. Comput. 36 (2014) A2611–A2632. | DOI | MR | Zbl

[30] A. Yagi, H -functional calculus and characterization of domains of fractional powers. In: Recent Advances in Operator Theory and Applications, edited by T. Ando, R.E. Curto, I.B. Jung and W.Y. Lee, Birkhäuser, Basel (2008) 217–235. | MR | Zbl

Cité par Sources :