A dual hybrid Virtual Element scheme for plane linear elastic problems is presented and analysed. In particular, stability and convergence results have been established. The method, which is first order convergent, has been numerically tested on two benchmarks with closed form solution, and on a typical microelectromechanical system. The numerical outcomes have proved that the dual hybrid scheme represents a valid alternative to the more classical low-order displacement-based Virtual Element Method.
Accepté le :
Publié le :
DOI : 10.1051/m2an/2020011
Mots-clés : Virtual element method, plane elasticity problems, $$ error estimates, stability estimates, dual hybrid formulations
@article{M2AN_2020__54_5_1725_0, author = {Artioli, Edoardo and de Miranda, Stefano and Lovadina, Carlo and Patruno, Luca}, title = {A dual hybrid virtual element method for plane elasticity problems}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1725--1750}, publisher = {EDP-Sciences}, volume = {54}, number = {5}, year = {2020}, doi = {10.1051/m2an/2020011}, mrnumber = {4126310}, zbl = {1482.65210}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2020011/} }
TY - JOUR AU - Artioli, Edoardo AU - de Miranda, Stefano AU - Lovadina, Carlo AU - Patruno, Luca TI - A dual hybrid virtual element method for plane elasticity problems JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2020 SP - 1725 EP - 1750 VL - 54 IS - 5 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2020011/ DO - 10.1051/m2an/2020011 LA - en ID - M2AN_2020__54_5_1725_0 ER -
%0 Journal Article %A Artioli, Edoardo %A de Miranda, Stefano %A Lovadina, Carlo %A Patruno, Luca %T A dual hybrid virtual element method for plane elasticity problems %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2020 %P 1725-1750 %V 54 %N 5 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2020011/ %R 10.1051/m2an/2020011 %G en %F M2AN_2020__54_5_1725_0
Artioli, Edoardo; de Miranda, Stefano; Lovadina, Carlo; Patruno, Luca. A dual hybrid virtual element method for plane elasticity problems. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 5, pp. 1725-1750. doi : 10.1051/m2an/2020011. http://www.numdam.org/articles/10.1051/m2an/2020011/
[1] A stream virtual element formulation of the Stokes problem on polygonal meshes. SIAM J. Numer. Anal. 52 (2014) 386–404. | DOI | MR | Zbl
, , and ,[2] An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19 (1982) 742–760. | DOI | MR | Zbl
,[3] Arbitrary order 2D virtual elements for polygonal meshes: Part I, elastic problem. Comput. Mech. 60 (2017) 355–377. | DOI | MR | Zbl
, , and ,[4] A stress/displacement virtual element method for plane elasticity problems. Comp. Meth. Appl. Mech. Eng. 325 (2017) 155–174. | DOI | MR | Zbl
, , and ,[5] A family of virtual element methods for plane elasticity problems based on the hellinger-reissner principle. Comput. Methods Appl. Mech. Eng. 340 (2018) 978–999. | DOI | MR | Zbl
, , and ,[6] An equilibrium-based stress recovery procedure for the VEM. Int. J. Numer. Methods Eng. 117 (2019) 885–900. | DOI | MR | Zbl
, , and ,[7] Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23 (2013) 199–214. | DOI | MR | Zbl
, , , , and ,[8] Virtual elements for linear elasticity problems. SIAM J. Numer. Anal. 51 (2013) 794–812. | DOI | MR | Zbl
, and ,[9] A virtual element method for elastic and inelastic problems on polytope meshes. Comput. Methods Appl. Mech. Eng. 295 (2015) 327–346. | DOI | MR | Zbl
, and ,[10] Stability analysis for the Virtual Element Method. Math. Models Methods Appl. Sci. 27 (2017) 2557–2594. | DOI | MR | Zbl
, and ,[11] Divergence free virtual elements for the Stokes problem on polygonal meshes. ESAIM: M2AN 51 (2017) 509–535. | DOI | Numdam | MR | Zbl
, and ,[12] Virtual elements for a shear-deflection formulation of Reissner-Mindlin plates. Math. Comput. 88 (2019) 149–178. | DOI | MR | Zbl
, and ,[13] Mixed finite element methods and applications. In: Vol. 44 of Springer Series in Computational Mathematics. Springer, Heidelberg (2013). | DOI | MR | Zbl
, and ,[14] Finite Elements: Theory, Fast Solvers, and Applications in Elasticity Theory, 3rd edition. Cambridge University Press (2007). | DOI | MR | Zbl
,[15] Some estimates for virtual element methods. Comput. Methods Appl. Math. 17 (2017) 553–574. | DOI | MR | Zbl
, and ,[16] Virtual element methods for plate bending problems. Comput. Methods Appl. Mech. Eng. 253 (2013) 455–462. | DOI | MR | Zbl
and ,[17] Basic principles of mixed virtual element methods. ESAIM: M2AN 48 (2014) 1227–1240. | DOI | Numdam | MR | Zbl
, and ,[18] A mixed virtual element method for a pseudostress-based formulation of linear elasticity. Appl. Numer. Math. 135 (2019) 423–442. | DOI | MR | Zbl
, and ,[19] Virtual elements for the Reissner-Mindlin plate problem. Numer. Methods Part. Differ. Equ. 34 (2018) 1117–1144. | DOI | MR | Zbl
,[20] The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam (1978). | MR | Zbl
,[21] COMSOL AB, Comsol Multiphysics® User’s Guide (version 3.5). Available from: http://www.comsol.com/ (2008).
[22] A simple hybrid stress element for shear deformable plates. Int. J. Numer. Methods Eng. 65 (2006) 808–833. | DOI | Zbl
and ,[23] On the virtual element method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes. Comput. Methods Appl. Mech. Eng. 282 (2014) 132–160. | DOI | MR | Zbl
, and ,[24] The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. 2nd edition. Dover (2000). | MR | Zbl
,[25] Problèmes aux limites non homogènes et applications. In: Vol. 1 of Travaux et Recherches Mathématiques, No. 17. Dunod, Paris (1968). | Zbl
and ,[26] A virtual element method for the vibration problem of Kirchhoff plates. ESAIM: M2AN 52 (2018) 1437–1456. | DOI | Numdam | MR | Zbl
, and ,[27] A simulation module for microsystems using hybrid finite elements: an overview, edited by , , and . In: Micro and Smart Devices and Systems. Springer Tracts in Mechanical Engineering. Springer, New Delhi (2014) 355–373. | DOI
, , and ,[28] Rational approach for assumed stress finite elements. Int. J. Numer. Methods Eng. 20 (1984) 1685–1695. | DOI | Zbl
and ,[29] A rational approach for choosing stress terms for hybrid finite element formulations. Int. J. Numer. Methods Eng. 26 (1988) 2331–2343. | DOI | MR | Zbl
, ,[30] Mixed and hybrid methods. In: Vol. 2 of Finite Element Methods (Part 1). Handbook of Numerical Analysis. Elsevier (1991) 523–639. | MR | Zbl
, ,[31] VEM for inelastic solids. Comput. Methods Appl. Sci. 46 (2018) 381–394. | DOI | MR | Zbl
and ,[32] Virtual element method for two-dimensional linear elasticity problem in mixed weakly symmetric formulation. Appl. Math. Comput. 328 (2018) 1–25. | MR | Zbl
and ,[33] Mixed virtual element methods for elastodynamics with weak symmetry. J. Comput. Appl. Math. 353 (2019) 49–71. | DOI | MR | Zbl
, and ,[34] The nonconforming virtual element method for elasticity problems. J. Comput. Phys. 378 (2019) 394–410. | DOI | MR | Zbl
, , and ,[35] The Morley-type virtual element for plate bending problems. J. Sci. Comput. 76 (2018) 610–629. | DOI | MR | Zbl
, , and ,Cité par Sources :