A dual hybrid virtual element method for plane elasticity problems
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 5, pp. 1725-1750.

A dual hybrid Virtual Element scheme for plane linear elastic problems is presented and analysed. In particular, stability and convergence results have been established. The method, which is first order convergent, has been numerically tested on two benchmarks with closed form solution, and on a typical microelectromechanical system. The numerical outcomes have proved that the dual hybrid scheme represents a valid alternative to the more classical low-order displacement-based Virtual Element Method.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1051/m2an/2020011
Classification : 65N15, 65N30
Mots-clés : Virtual element method, plane elasticity problems, $$ error estimates, stability estimates, dual hybrid formulations
@article{M2AN_2020__54_5_1725_0,
     author = {Artioli, Edoardo and de Miranda, Stefano and Lovadina, Carlo and Patruno, Luca},
     title = {A dual hybrid virtual element method for plane elasticity problems},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1725--1750},
     publisher = {EDP-Sciences},
     volume = {54},
     number = {5},
     year = {2020},
     doi = {10.1051/m2an/2020011},
     mrnumber = {4126310},
     zbl = {1482.65210},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2020011/}
}
TY  - JOUR
AU  - Artioli, Edoardo
AU  - de Miranda, Stefano
AU  - Lovadina, Carlo
AU  - Patruno, Luca
TI  - A dual hybrid virtual element method for plane elasticity problems
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2020
SP  - 1725
EP  - 1750
VL  - 54
IS  - 5
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2020011/
DO  - 10.1051/m2an/2020011
LA  - en
ID  - M2AN_2020__54_5_1725_0
ER  - 
%0 Journal Article
%A Artioli, Edoardo
%A de Miranda, Stefano
%A Lovadina, Carlo
%A Patruno, Luca
%T A dual hybrid virtual element method for plane elasticity problems
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2020
%P 1725-1750
%V 54
%N 5
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2020011/
%R 10.1051/m2an/2020011
%G en
%F M2AN_2020__54_5_1725_0
Artioli, Edoardo; de Miranda, Stefano; Lovadina, Carlo; Patruno, Luca. A dual hybrid virtual element method for plane elasticity problems. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 5, pp. 1725-1750. doi : 10.1051/m2an/2020011. http://www.numdam.org/articles/10.1051/m2an/2020011/

[1] P.F. Antonietti, L. Beirão Da Veiga, D. Mora and M. Verani, A stream virtual element formulation of the Stokes problem on polygonal meshes. SIAM J. Numer. Anal. 52 (2014) 386–404. | DOI | MR | Zbl

[2] D.N. Arnold, An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19 (1982) 742–760. | DOI | MR | Zbl

[3] E. Artioli, L. Beirão Da Veiga, C. Lovadina and E. Sacco, Arbitrary order 2D virtual elements for polygonal meshes: Part I, elastic problem. Comput. Mech. 60 (2017) 355–377. | DOI | MR | Zbl

[4] E. Artioli, S. De Miranda, C. Lovadina and L. Patruno, A stress/displacement virtual element method for plane elasticity problems. Comp. Meth. Appl. Mech. Eng. 325 (2017) 155–174. | DOI | MR | Zbl

[5] E. Artioli, S. De Miranda, C. Lovadina and L. Patruno, A family of virtual element methods for plane elasticity problems based on the hellinger-reissner principle. Comput. Methods Appl. Mech. Eng. 340 (2018) 978–999. | DOI | MR | Zbl

[6] E. Artioli, S. De Miranda, C. Lovadina and L. Patruno, An equilibrium-based stress recovery procedure for the VEM. Int. J. Numer. Methods Eng. 117 (2019) 885–900. | DOI | MR | Zbl

[7] L. Beirão Da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L.D. Marini and A. Russo, Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23 (2013) 199–214. | DOI | MR | Zbl

[8] L. Beirão Da Veiga, F. Brezzi and L.D. Marini, Virtual elements for linear elasticity problems. SIAM J. Numer. Anal. 51 (2013) 794–812. | DOI | MR | Zbl

[9] L. Beirão Da Veiga, C. Lovadina and D. Mora, A virtual element method for elastic and inelastic problems on polytope meshes. Comput. Methods Appl. Mech. Eng. 295 (2015) 327–346. | DOI | MR | Zbl

[10] L. Beirão Da Veiga, C. Lovadina and A. Russo, Stability analysis for the Virtual Element Method. Math. Models Methods Appl. Sci. 27 (2017) 2557–2594. | DOI | MR | Zbl

[11] L. Beirão Da Veiga, C. Lovadina and G. Vacca, Divergence free virtual elements for the Stokes problem on polygonal meshes. ESAIM: M2AN 51 (2017) 509–535. | DOI | Numdam | MR | Zbl

[12] L. Beirão Da Veiga, D. Mora and G. Rivera, Virtual elements for a shear-deflection formulation of Reissner-Mindlin plates. Math. Comput. 88 (2019) 149–178. | DOI | MR | Zbl

[13] D. Boffi, F. Brezzi and M. Fortin, Mixed finite element methods and applications. In: Vol. 44 of Springer Series in Computational Mathematics. Springer, Heidelberg (2013). | DOI | MR | Zbl

[14] D. Braess, Finite Elements: Theory, Fast Solvers, and Applications in Elasticity Theory, 3rd edition. Cambridge University Press (2007). | DOI | MR | Zbl

[15] S.C. Brenner, Q. Guan and L.-Y. Sung, Some estimates for virtual element methods. Comput. Methods Appl. Math. 17 (2017) 553–574. | DOI | MR | Zbl

[16] F. Brezzi and L.D. Marini, Virtual element methods for plate bending problems. Comput. Methods Appl. Mech. Eng. 253 (2013) 455–462. | DOI | MR | Zbl

[17] F. Brezzi, R.S. Falk and L.D. Marini, Basic principles of mixed virtual element methods. ESAIM: M2AN 48 (2014) 1227–1240. | DOI | Numdam | MR | Zbl

[18] E. Cáceres, G.N. Gatica and F.A. Sequeira, A mixed virtual element method for a pseudostress-based formulation of linear elasticity. Appl. Numer. Math. 135 (2019) 423–442. | DOI | MR | Zbl

[19] C. Chinosi, Virtual elements for the Reissner-Mindlin plate problem. Numer. Methods Part. Differ. Equ. 34 (2018) 1117–1144. | DOI | MR | Zbl

[20] P.G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam (1978). | MR | Zbl

[21] COMSOL AB, Comsol Multiphysics® User’s Guide (version 3.5). Available from: http://www.comsol.com/ (2008).

[22] S. De Miranda and F. Ubertini, A simple hybrid stress element for shear deformable plates. Int. J. Numer. Methods Eng. 65 (2006) 808–833. | DOI | Zbl

[23] A.L. Gain, C. Talischi and G.H. Paulino, On the virtual element method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes. Comput. Methods Appl. Mech. Eng. 282 (2014) 132–160. | DOI | MR | Zbl

[24] T.J.R. Hughes, The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. 2nd edition. Dover (2000). | MR | Zbl

[25] J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications. In: Vol. 1 of Travaux et Recherches Mathématiques, No. 17. Dunod, Paris (1968). | Zbl

[26] D. Mora, G. Rivera and I. Velásquez, A virtual element method for the vibration problem of Kirchhoff plates. ESAIM: M2AN 52 (2018) 1437–1456. | DOI | Numdam | MR | Zbl

[27] K.D. Patil, S. Balakrishnan, C.S. Jog and G.K. Ananthasuresh, A simulation module for microsystems using hybrid finite elements: an overview, edited by K. Vinoy, G. Ananthasuresh, R. Pratap and S. Krupanidhi. In: Micro and Smart Devices and Systems. Springer Tracts in Mechanical Engineering. Springer, New Delhi (2014) 355–373. | DOI

[28] T.H.H. Pian and K. Sumihara, Rational approach for assumed stress finite elements. Int. J. Numer. Methods Eng. 20 (1984) 1685–1695. | DOI | Zbl

[29] T.H.H. Pian, C.C. Wu, A rational approach for choosing stress terms for hybrid finite element formulations. Int. J. Numer. Methods Eng. 26 (1988) 2331–2343. | DOI | MR | Zbl

[30] J.E. Roberts, J.-M. Thomas, Mixed and hybrid methods. In: Vol. 2 of Finite Element Methods (Part 1). Handbook of Numerical Analysis. Elsevier (1991) 523–639. | MR | Zbl

[31] R.L. Taylor and E. Artioli, VEM for inelastic solids. Comput. Methods Appl. Sci. 46 (2018) 381–394. | DOI | MR | Zbl

[32] B. Zhang and M. Feng, Virtual element method for two-dimensional linear elasticity problem in mixed weakly symmetric formulation. Appl. Math. Comput. 328 (2018) 1–25. | MR | Zbl

[33] B. Zhang, Y. Yang and M. Feng, Mixed virtual element methods for elastodynamics with weak symmetry. J. Comput. Appl. Math. 353 (2019) 49–71. | DOI | MR | Zbl

[34] B. Zhang, J. Zhao, Y. Yang and S. Chen, The nonconforming virtual element method for elasticity problems. J. Comput. Phys. 378 (2019) 394–410. | DOI | MR | Zbl

[35] J. Zhao, B. Zhang, S. Chen and S. Mao, The Morley-type virtual element for plate bending problems. J. Sci. Comput. 76 (2018) 610–629. | DOI | MR | Zbl

Cité par Sources :