A Banach spaces-based analysis of a new fully-mixed finite element method for the Boussinesq problem
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 5, pp. 1525-1568.

In this paper we propose and analyze, utilizing mainly tools and abstract results from Banach spaces rather than from Hilbert ones, a new fully-mixed finite element method for the stationary Boussinesq problem with temperature-dependent viscosity. More precisely, following an idea that has already been applied to the Navier–Stokes equations and to the fluid part only of our model of interest, we first incorporate the velocity gradient and the associated Bernoulli stress tensor as auxiliary unknowns. Additionally, and differently from earlier works in which either the primal or the classical dual-mixed method is employed for the heat equation, we consider here an analogue of the approach for the fluid, which consists of introducing as further variables the gradient of temperature and a vector version of the Bernoulli tensor. The resulting mixed variational formulation, which involves the aforementioned four unknowns together with the original variables given by the velocity and temperature of the fluid, is then reformulated as a fixed point equation. Next, we utilize the well-known Banach and Brouwer theorems, combined with the application of the Babuška-Brezzi theory to each independent equation, to prove, under suitable small data assumptions, the existence of a unique solution to the continuous scheme, and the existence of solution to the associated Galerkin system for a feasible choice of the corresponding finite element subspaces. Finally, we derive optimal a priori error estimates and provide several numerical results illustrating the performance of the fully-mixed scheme and confirming the theoretical rates of convergence.

DOI : 10.1051/m2an/2020007
Classification : 65N30, 65N12, 65N15, 35Q79, 80A20, 76D05, 76R10
Mots-clés : Boussinesq equations, fully–mixed formulation, fixed point theory, finite element methods, $$ error analysis
@article{M2AN_2020__54_5_1525_0,
     author = {Colmenares, Eligio and Gatica, Gabriel N. and Moraga, Sebasti\'an},
     title = {A {Banach} spaces-based analysis of a new fully-mixed finite element method for the {Boussinesq} problem},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1525--1568},
     publisher = {EDP-Sciences},
     volume = {54},
     number = {5},
     year = {2020},
     doi = {10.1051/m2an/2020007},
     mrnumber = {4123670},
     zbl = {1445.65043},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2020007/}
}
TY  - JOUR
AU  - Colmenares, Eligio
AU  - Gatica, Gabriel N.
AU  - Moraga, Sebastián
TI  - A Banach spaces-based analysis of a new fully-mixed finite element method for the Boussinesq problem
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2020
SP  - 1525
EP  - 1568
VL  - 54
IS  - 5
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2020007/
DO  - 10.1051/m2an/2020007
LA  - en
ID  - M2AN_2020__54_5_1525_0
ER  - 
%0 Journal Article
%A Colmenares, Eligio
%A Gatica, Gabriel N.
%A Moraga, Sebastián
%T A Banach spaces-based analysis of a new fully-mixed finite element method for the Boussinesq problem
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2020
%P 1525-1568
%V 54
%N 5
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2020007/
%R 10.1051/m2an/2020007
%G en
%F M2AN_2020__54_5_1525_0
Colmenares, Eligio; Gatica, Gabriel N.; Moraga, Sebastián. A Banach spaces-based analysis of a new fully-mixed finite element method for the Boussinesq problem. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 5, pp. 1525-1568. doi : 10.1051/m2an/2020007. http://www.numdam.org/articles/10.1051/m2an/2020007/

[1] R.A. Adams and J.J.F. Fournier, Pure and Applied Mathematics (Amsterdam). Elsevier/Academic Press, Amsterdam (2003). | MR

[2] K. Allali, A priori and a posteriori error estimates for Boussinesq equations. Int. J. Numer. Anal. Model. 2 (2005) 179–196. | MR | Zbl

[3] J.A. Almonacid and G.N. Gatica, A fully-mixed finite element method for the n -dimensional Boussinesq problem with temperature-dependent parameters. Comput. Methods Appl. Math. 20 (2019) 187–213. | DOI | MR

[4] J.A. Almonacid, G.N. Gatica and R. Oyarzúa, A mixed-primal finite element method for the Boussinesq problem with temperature-dependent viscosity. Calcolo 55 (2018) 36. | DOI | MR

[5] J.A. Almonacid, G.N. Gatica, R. Oyarzúa and R. Ruiz-Baier, A new mixed finite element method for the n -dimensional Boussinesq problem with temperature-dependent viscosity. Preprint 2018-18, Centro de Investigación en Ingeniería Matemática (CI2MA), Universidad de Concepción (2018). | MR

[6] M. Alvarez, G.N. Gatica and R. Ruiz-Baier, An augmented mixed-primal finite element method for a coupled flow-transport problem. ESAIM: M2AN 49 (2015) 1399–1427. | DOI | Numdam | MR

[7] G. Barakos, E. Mitsoulis and D. Assimacopoulos, Natural convection flow in a square cavity revisited: laminar and turbulent models with wall functions. Int. J. Numer. Methods Fluids 18 (1994) 695–719. | DOI | Zbl

[8] C. Bernardi, B. Métivet and B. Pernaud-Thomas, Couplage des équations de Navier-Stokes et de la chaleur: le modèle et son approximation par éléments finis. RAIRO Modél. Math. Anal. Numér. 29 (1995) 871–921. | DOI | Numdam | MR | Zbl

[9] D. Boffi, F. Brezzi and M. Fortin, Reduced symmetry elements in linear elasticity. Commun. Pure Appl. Anal. 8 (2009) 95–121. | DOI | MR | Zbl

[10] D. Boffi, F. Brezzi and M. Fortin, Mixed Finite Element Methods and Applications. InVol. 44 of Springer Series in Computational Mathematics. Springer, Heidelberg (2013). | MR | Zbl

[11] J. Boland and W. Layton, An analysis of the FEM for natural convection problems. Numer. Methods Part. Differ. Equ. 6 (1990) 115–126. | DOI | MR | Zbl

[12] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. In: Vol. 15 of Springer Series in Computational Mathematics. Springer-Verlag, New York (1991). | MR | Zbl

[13] J. Camaño, C. García and R. Oyarzúa, Analysis of a conservative mixed-FEM for the stationary Navier-Stokes problem. Preprint 2018-25, Centro de Investigación en Ingeniería Matemática (CI2MA), Universidad de Concepción (2018).

[14] J. Camaño, C. Muñoz and R. Oyarzúa, Numerical analysis of a dual-mixed problem in non-standard Banach spaces. Electron. Trans. Numer. Anal. 48 (2018) 114–130. | DOI | MR

[15] J. Camaño, R. Oyarzúa and G. Tierra, Analysis of an augmented mixed-FEM for the Navier-Stokes problem. Math. Comput. 86 (2017) 589–615. | DOI | MR

[16] P.G. Ciarlet, Linear and Nonlinear Functional Analysis with Applications. Society for Industrial and Applied Mathematics, Philadelphia, PA (2013). | DOI | MR | Zbl

[17] E. Colmenares, G.N. Gatica and S. Moraga, A Banach spaces-based analysis of a new fully-mixed finite element method for the Boussinesq problem. Preprint 2019-04, Centro de Investigación en Ingeniería Matemática (CI2MA), Universidad de Concepción (2019). [available at https://www.ci2ma.udec.cl/publicaciones/prepublicaciones/].

[18] E. Colmenares, G.N. Gatica and R. Oyarzúa, Analysis of an augmented mixed–primal formulation for the stationary Boussinesq problem. Numer. Methods Part. Differ. Equ. 32 (2016) 445–478. | DOI | MR

[19] E. Colmenares, G.N. Gatica and R. Oyarzúa, An augmented fully-mixed finite element method for the stationary Boussinesq problem. Calcolo 54 (2017) 167–205. | DOI | MR

[20] E. Colmenares and M. Neilan, Dual-mixed finite element methods for the stationary Boussinesq problem. Comput. Math. Appl. 72 (2016) 1828–1850. | DOI | MR

[21] A. Dalal and M.K. Das, Natural convection in a rectangular cavity heated from below and uniformly cooled from the top and both sides. Numer. Heat Tr. A-Appl. 49 (2006) 301–322. | DOI

[22] T. Davis, Algorithm 832: UMFPACK V4.3 – an unsymmetric-pattern multifrontal method. ACM Trans. Math. Softw. 30 (2004) 196–199. | DOI | MR | Zbl

[23] G. De Vahl Davis, Natural convection of air in a square cavity: a benchmark numerical solution. Int. J. Numer. Methods Fluids 3 (1983) 249–264. | DOI | Zbl

[24] A. Ern and J.-L. Guermond, Theory and practice of finite elements. In: Vol. 159 of Applied Mathematical Sciences, Springer-Verlag, New York (2004) | DOI | MR | Zbl

[25] M. Farhloul and M. Fortin, Dual hybrid methods for the elasticity and the Stokes problems: a unified approach. Numer. Math. 76 (1997) 419–440. | DOI | MR | Zbl

[26] M. Farhloul, S. Nicaise and L. Paquet, A mixed formulation of Boussinesq equations: analysis of nonsingular solutions. Math. Comput. 69 (2000) 965–986. | DOI | MR | Zbl

[27] M. Farhloul, S. Nicaise and L. Paquet, A refined mixed finite element method for the Boussinesq equations in polygonal domains. IMA J. Numer. Anal. 21 (2001) 525–551. | DOI | MR | Zbl

[28] S.J. Fromm, Potential space estimates for Green potentials in convex domains. Proc. Amer. Math. Soc. 119 (1993) 225–233. | DOI | MR | Zbl

[29] G.N. Gatica, A simple introduction to the mixed finite element method. Theory and applications. In: SpringerBriefs in Mathematics, Springer, Cham (2014) | MR | Zbl

[30] F. Hecht, New development in FreeFem++. J. Numer. Math. 20 (2012) 251–265. | DOI | MR | Zbl

[31] J. Howell and N. Walkington, Inf-sup conditions for twofold saddle point problems. Numer. Math. 118 (2011) 663–693. | DOI | MR | Zbl

[32] J. Howell and N. Walkington, Dual-mixed finite element methods for the Navier-Stokes equations. ESAIM: M2AN 47 (2013) 789–805. | DOI | Numdam | MR | Zbl

[33] J. Howell and N. Walkington, Dual-mixed finite element methods for the Navier–Stokes equations. Preprint arXiv:1603.09231 [math.NA] (2016). | Numdam | MR | Zbl

[34] P. Huang, W. Li and Z. Si, Several iterative schemes for the stationary natural convection equations at different Rayleigh numbers. Numer. Methods Part. Differ. Equ. 31 (2015) 761–776. | DOI | MR

[35] M. Ishii and T. Hibiki, Thermo-fluid Dynamics of Two-phase Flow, 2nd edition. SpringerLink: Bcher, Springer, New York (2010). | MR | Zbl

[36] R. Oyarzúa, T. Qin and D. Schötzau, An exactly divergence-free finite element method for a generalized Boussinesq problem. IMA J. Numer. Anal. 34 (2014) 1104–1135. | DOI | MR | Zbl

[37] R. Oyarzúa and P. Zúñiga, Analysis of a conforming finite element method for the Boussinesq problem with temperature-dependent parameters. J. Comput. Appl. Math. 323 (2017) 71–94. | DOI | MR

[38] A. Quarteroni and A. Valli, Numerical approximation of partial differential equations. In: Vol. 23 of Springer Series in Computational Mathematics, Springer-Verlag, Berlin (1994). | DOI | MR | Zbl

[39] L.R. Scott and M. Vogelius, Conforming finite element methods for incompressible and nearly incompressible continua. Large-Scale Computations in Fluid Mechanics, Part 2 (La Jolla, Calif., 1983). In: Vol. 22 of Lect. Appl. Math, Amer. Math. Soc, Providence, RI (1985). | MR | Zbl

[40] L.R. Scott and M. Vogelius, Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials. ESAIM: M2AN 19 (1985) 111–143. | DOI | Numdam | MR | Zbl

[41] M. Tabata and D. Tagami, Error estimates of finite element methods for nonstationary thermal convection problems with temperature-dependent coefficients. Numer. Math. 100 (2005) 351–372. | DOI | MR | Zbl

[42] M. Vogelius, A right-inverse for the divergence operator in spaces of piecewise polynomials. Application to the p -version of the finite element method. Numer. Math. 41 (1983) 19–37. | DOI | MR | Zbl

[43] S. Zhang, A new family of stable mixed finite elements for the 3D Stokes equations. Math. Comput. 74 (2005) 543–554. | DOI | MR | Zbl

[44] S. Zhang, Quadratic divergence-free finite elements on Powell-Sabin tetrahedral grids. Calcolo 48 (2011) 211–244. | DOI | MR | Zbl

Cité par Sources :