On time-splitting methods for nonlinear Schrödinger equation with highly oscillatory potential
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 5, pp. 1491-1508.

In this work, we consider the numerical solution of the nonlinear Schrödinger equation with a highly oscillatory potential (NLSE-OP). The NLSE-OP is a model problem which frequently occurs in recent studies of some multiscale dynamical systems, where the potential introduces wide temporal oscillations to the solution and causes numerical difficulties. We aim to analyze rigorously the error bounds of the splitting schemes for solving the NLSE-OP to a fixed time. Our theoretical results show that the Lie–Trotter splitting scheme is uniformly and optimally accurate at the first order provided that the oscillatory potential is integrated exactly, while the Strang splitting scheme is not. Our results apply to general dispersive or wave equations with an oscillatory potential. The error estimates are confirmed by numerical results.

DOI : 10.1051/m2an/2020006
Classification : 65L05, 65L20, 65L70
Mots-clés : Nonlinear Schrödinger equation, highly oscillatory potential, Lie–Trotter splitting, Strang splitting, error estimates, uniformly accurate
@article{M2AN_2020__54_5_1491_0,
     author = {Su, Chunmei and Zhao, Xiaofei},
     title = {On time-splitting methods for nonlinear {Schr\"odinger} equation with highly oscillatory potential},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1491--1508},
     publisher = {EDP-Sciences},
     volume = {54},
     number = {5},
     year = {2020},
     doi = {10.1051/m2an/2020006},
     mrnumber = {4116683},
     zbl = {1451.65163},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2020006/}
}
TY  - JOUR
AU  - Su, Chunmei
AU  - Zhao, Xiaofei
TI  - On time-splitting methods for nonlinear Schrödinger equation with highly oscillatory potential
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2020
SP  - 1491
EP  - 1508
VL  - 54
IS  - 5
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2020006/
DO  - 10.1051/m2an/2020006
LA  - en
ID  - M2AN_2020__54_5_1491_0
ER  - 
%0 Journal Article
%A Su, Chunmei
%A Zhao, Xiaofei
%T On time-splitting methods for nonlinear Schrödinger equation with highly oscillatory potential
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2020
%P 1491-1508
%V 54
%N 5
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2020006/
%R 10.1051/m2an/2020006
%G en
%F M2AN_2020__54_5_1491_0
Su, Chunmei; Zhao, Xiaofei. On time-splitting methods for nonlinear Schrödinger equation with highly oscillatory potential. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 5, pp. 1491-1508. doi : 10.1051/m2an/2020006. http://www.numdam.org/articles/10.1051/m2an/2020006/

[1] R.A. Adams and J.J. Fournier, Sobolev Spaces. Elsevier (2003). | MR | Zbl

[2] W. Bao and X. Dong, Analysis and comparison of numerical methods for the Klein-Gordon equation in the nonrelativistic limit regime. Numer. Math. 120 (2012) 189–229. | DOI | MR | Zbl

[3] W. Bao and C. Su, Uniform error bounds of a finite difference method for the Zakharov system in the subsonic limit regime via an asymptotic consistent formulation. Multiscale Model. Simul. 15 (2017) 977–1002. | DOI | MR

[4] W. Bao and C. Su, Uniform error bounds of a finite difference method for the Klein–Gordon–Zakharov system in the subsonic limit regime. Math. Comput. 87 (2018) 2133–2158. | DOI | MR

[5] W. Bao and C. Su, Uniformly and optimally accurate methods for the Zakharov system in the subsonic limit regime. SIAM J. Sci. Comput. 40 (2018) A929–A953. | DOI | MR

[6] W. Bao and X. Zhao, A uniformly accurate multiscale time integrator spectral method for the Klein–Gordon–Zakharov system in the high-plasma-frequency limit regime. J. Comput. Phys. 327 (2016) 270–293. | DOI | MR

[7] W. Bao, Y. Cai and X. Zhao, A uniformly accurate multiscale time integrator pseudospectral method for the Klein-Gordon equation in the nonrelativistic limit regime. SIAM J. Numer. Anal. 52 (2014) 2488–2511. | DOI | MR | Zbl

[8] S. Baumstark and K. Schratz, Uniformly accurate oscillatory integrators for the Klein–Gordon–Zakharov system from low to high-plasma frequency regimes. SIAM J. Numer. Anal. 57 (2019) 429–457. | DOI | MR

[9] S. Baumstark, E. Faou and K. Schratz, Uniformly accurate exponential-type integrators for Klein-Gordon equations with asymptotic convergence to the classical NLS splitting. Math. Comput. 87 (2018) 1227–1254. | DOI | MR

[10] M. Berti and A. Maspero, Long time dynamics of Schrödinger and wave equations on flat tori. J. Differ. Equ. 267 (2019) 1167–1200. | DOI | MR

[11] C. Besse, B. Bidégaray and S. Descombes, Order estimates in time of splitting methods for the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 40 (2002) 26–40. | DOI | MR | Zbl

[12] J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations. Geom. Funct. Anal. 3 (1993) 107–156. | DOI | MR | Zbl

[13] J. Bourgain, Exponential sums and nonlinear Schrödinger equations. Geom. Funct. Anal. 3 (1993) 157–178. | DOI | MR | Zbl

[14] J. Bourgain, Global Solutions of Nonlinear Schrödinger Equations. In Vol. 46 of Colloquium Publications. American Mathematical Society, Providence, RI (1999). | DOI | MR | Zbl

[15] J. Bourgain, Growth of Sobolev norms in linear Schrödinger operators with quasi-periodic potential. Commun. Math. Phys. 204 (1999) 207–247. | DOI | MR | Zbl

[16] S. Buchholz, L. Gauckler, V. Grimm, M. Hochbruck and T. Jahnke, Closing the gap between trigonometric integrators and splitting methods for highly oscillatory differential equations. IMA J. Numer. Anal. 38 (2017) 57–74. | DOI | MR

[17] R. Carles, Nonlinear Schrodinger equation with time dependent potential. Commun. Math. Sci. 9 (2011) 937–964. | DOI | MR | Zbl

[18] R. Carles and C. Gallo, On Fourier time splitting methods for NLS equations in the semi-classical limit II. Analytic regularity. Numer. Math. 136 (2017) 315–342. | DOI | MR

[19] Ph. Chartier, N. Crouseilles, M. Lemou and F. Méhats, Uniformly accurate numerical schemes for highly oscillatory Klein-Gordon and nonlinear Schrödinger equations. Numer. Math. 129 (2015) 211–250. | DOI | MR | Zbl

[20] Ph. Chartier, N.J. Mauser, F. Méhats and Y. Zhang, Solving highly-oscillatory NLS with SAM: numerical efficiency and geometric properties. Disc. Contin. Dyn. Syst. Ser. S 9 (2016) 1327–1349. | DOI | MR

[21] Ph. Chartier, F. Méhats, M. Thalhammer and Y. Zhang, Improved error estimates for splitting methods applied to highly-oscillatory nonlinear Schrödinger equations. Math. Comput. 85 (2016) 2863–2885. | DOI | MR

[22] Ph. Chartier, M. Lemou, F. Méhats and G. Vilmart, A new class of uniformly accurate numerical schemes for highly oscillatory evolution equations. Found. Comput. Math. 20 (2020) 1–33. | DOI | MR

[23] N. Crouseilles, S.A. Hirstoaga and X. Zhao, Multiscale Particle-In-Cell methods and comparisons for long time two-dimensional Vlasov-Poisson equation with strong magnetic field. Comput. Phys. Commun. 222 (2018) 136–151. | DOI | MR

[24] N. Crouseilles, M. Lemou, F. Méhats and X. Zhao, Uniformly accurate Particle-in-Cell method for the long time two-dimensional Vlasov-Poisson equation with uniform strong magnetic field. J. Comput. Phys. 346 (2017) 172–190. | DOI | MR

[25] D. Fang and Q. Zhang, On growth of Sobolev norms in linear Schrödinger equations with time dependent Gevrey potential. J. Dyn. Differ. Equ. 24 (2012) 151–180. | DOI | MR | Zbl

[26] E. Faou, Geometric Numerical Integration and Schrödinger Equations. European Mathematical Society (2012). | MR | Zbl

[27] L. Gauckler, Convergence of a split-step Hermite method for the Gross-Pitaevskii equation. IMA J. Numer. Anal. 31 (2011) 396–415. | DOI | MR | Zbl

[28] E. Hairer, Ch. Lubich and G. Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations. Springer, Berlin (2006). | MR | Zbl

[29] S. Herr, D. Tataru and N. Tzvetkov, Global well-posedness of the energy critical nonlinear Schrödinger equation with small initial data in H1(𝕋3). Duke Math. J. 159 (2011) 329–349. | DOI | MR | Zbl

[30] A.D. Ionescu and B. Pausader, The energy-critical defocusing NLS on (𝕋3). Duke Math. J. 161 (2012) 1581–1612. | DOI | MR | Zbl

[31] A. Iserles, K. Kropielnicka and P. Singh, Solving Schrödinger equation in semiclassical regime with highly oscillatory time-dependent potentials. J. Comput. Phys. 376 (2019) 564–584. | DOI | MR

[32] Ch. Lubich, On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger equations. Math. Comput. 77 (2008) 2141–2153. | DOI | MR | Zbl

[33] Y. Ma and C. Su, A uniformly and optimally accurate multiscale time integrator method for the Klein–Gordon–Zakharov system in the subsonic limit regime. Comput. Math. Appl. 76 (2018) 602–619. | DOI | MR

[34] N. Masmoudi and K. Nakanishi, From the Klein–Gordon–Zakharov system to the nonlinear Schrödinger equation. J. Hyperbol. Differ. Equ. 2 (2005) 975–1008. | DOI | MR | Zbl

[35] N. Mauser, Y. Zhang and X. Zhao, On the rotating nonlinear Klein-Gordon equation: non-relativistic limit and numerical methods. Preprint hal-01956352 (2018). | MR

[36] J. Shen, T. Tang and L. Wang, Spectral Methods: Algorithms, Analysis and Applications, Springer, Berlin (2011). | DOI | MR | Zbl

[37] J. Shen and Z.Q. Wang, Error analysis of the Strang time-splitting Laguerre–Hermite/Hermite collocation methods for the Gross–Pitaevskii equation. Found. Comput. Math. 13 (2013) 99–137. | DOI | MR | Zbl

[38] M. Thalhammer, Convergence analysis of high-order time-splitting pseudo-spectral methods for nonlinear Schrödinger equations. SIAM J. Numer. Anal. 50 (2012) 3231–3258. | DOI | MR | Zbl

[39] W.M. Wang, Logarithmic bounds on Sobolev norms for time dependent linear Schrödinger equations. Commun. Part. Differ. Equ. 33 (2008) 2164–2179. | DOI | MR | Zbl

[40] Y. Wang and X. Zhao, Symmetric high order Gautschi-type exponential wave integrators pseudospectral method for the nonlinear Klein-Gordon equation in the nonrelativistic limit regime. Int. J. Numer. Anal. Model. 15 (2017) 405–427. | MR

[41] J.A.C. Weideman and B.M. Herbst, Split-step methods for the solution of the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 23 (1986) 485–507. | DOI | MR | Zbl

[42] C. Xiong, M. Good, Y. Guo, X. Liu and K. Huang, Relativistic superfluidity and vorticity from the nonlinear Klein-Gordon equation. Phys. Rev. D 90 (2014) 125019. | DOI

[43] H. Yoshida, Construction of higher order symplectic integrators. Phys. Lett. A 150 (1990) 262–268. | DOI | MR

[44] X. Zhao, On error estimates of an exponential wave integrator sine pseudospectral method for the Klein–Gordon–Zakharov system. Numer. Methods Part. Differ. Equ. 32 (2016) 266–291. | DOI | MR

Cité par Sources :