Nonlinear iteration acceleration solution for equilibrium radiation diffusion equation
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 5, pp. 1465-1490.

This paper discusses accelerating iterative methods for solving the fully implicit (FI) scheme of equilibrium radiation diffusion problem. Together with the FI Picard factorization (PF) iteration method, three new nonlinear iterative methods, namely, the FI Picard-Newton factorization (PNF), FI Picard-Newton (PN) and derivative free Picard-Newton factorization (DFPNF) iteration methods are studied, in which the resulting linear equations can preserve the parabolic feature of the original PDE. By using the induction reasoning technique to deal with the strong nonlinearity of the problem, rigorous theoretical analysis is performed on the fundamental properties of the four iteration methods. It shows that they all have first-order time and second-order space convergence, and moreover, can preserve the positivity of solutions. It is also proved that the iterative sequences of the PF iteration method and the three Newton-type iteration methods converge to the solution of the FI scheme with a linear and a quadratic speed respectively. Numerical tests are presented to confirm the theoretical results and highlight the high performance of these Newton acceleration methods.

DOI : 10.1051/m2an/2019095
Classification : 35K55, 65M06, 65M12, 65B99
Mots-clés : Equilibrium radiation diffusion equation, accelerated iteration method, convergence accuracy, convergence spee, positivity
@article{M2AN_2020__54_5_1465_0,
     author = {Zhang, Yanmei and Cui, Xia and Yuan, Guangwei},
     title = {Nonlinear iteration acceleration solution for equilibrium radiation diffusion equation},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1465--1490},
     publisher = {EDP-Sciences},
     volume = {54},
     number = {5},
     year = {2020},
     doi = {10.1051/m2an/2019095},
     mrnumber = {4116684},
     zbl = {1443.65152},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2019095/}
}
TY  - JOUR
AU  - Zhang, Yanmei
AU  - Cui, Xia
AU  - Yuan, Guangwei
TI  - Nonlinear iteration acceleration solution for equilibrium radiation diffusion equation
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2020
SP  - 1465
EP  - 1490
VL  - 54
IS  - 5
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2019095/
DO  - 10.1051/m2an/2019095
LA  - en
ID  - M2AN_2020__54_5_1465_0
ER  - 
%0 Journal Article
%A Zhang, Yanmei
%A Cui, Xia
%A Yuan, Guangwei
%T Nonlinear iteration acceleration solution for equilibrium radiation diffusion equation
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2020
%P 1465-1490
%V 54
%N 5
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2019095/
%R 10.1051/m2an/2019095
%G en
%F M2AN_2020__54_5_1465_0
Zhang, Yanmei; Cui, Xia; Yuan, Guangwei. Nonlinear iteration acceleration solution for equilibrium radiation diffusion equation. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 5, pp. 1465-1490. doi : 10.1051/m2an/2019095. http://www.numdam.org/articles/10.1051/m2an/2019095/

[1] J.W. Bates, D.A. Knoll, W.J. Rider, R.B. Lowrie and V.A. Mousseau, On consistent time-integration methods for radiation hydrodynamics in the equilibrium diffusion limit: low-energy-density regime. J. Comput. Phys. 167 (2001) 99–130. | DOI | Zbl

[2] P.N. Brown, D.E. Shumaker and C.S. Woodward, Fully implicit solution of large-scale non-equilibrium radiation diffusion with high order time integration. J. Comput. Phys. 204 (2005) 760–783. | DOI | MR | Zbl

[3] X. Cui and J.Y. Yue, Property analysis and quick solutions for nonlinear discrete schemes for conservative diffusion equation. Math. Numer. Sin. 37 (2015) 227–246. | MR | Zbl

[4] X. Cui, G.W. Yuan and Z.J. Shen, Asymptotic analysis of discrete schemes for nonequilibrium radiation diffusion. J. Comput. Phys. 313 (2016) 415–429. | DOI | MR | Zbl

[5] X. Cui, G.W. Yuan and J.Y. Yue, Numerical analysis and iteration acceleration of a fully implicit scheme for nonlinear diffusion problem with second-order time evolution. Numer. Meth. Part. D. E. 32 (2016) 121–140. | DOI | MR | Zbl

[6] X. Cui, Z.J. Shen and G.W. Yuan, Asymptotic-preserving discrete schemes for non-equilibrium radiation diffusion problem in spherical and cylindrical symmetrical geometries. Commun. Comput. Phys. 23 (2018) 198–229. | MR | Zbl

[7] J.D. Densmore and E.W. Larsen, Asymptotic equilibrium diffusion analysis of time-dependent Monte Carlo methods for grey radiative transfer. J. Comput. Phys. 199 (2004) 175–204. | DOI | Zbl

[8] J. Droniou, R. Eymard, T. Gallouët, C. Guichard and R. Herbin, The gradient discretisation method: a framework for the discretisation and numerical analysis of linear and nonlinear elliptic and parabolic problems. In Maths & Applications. Springer (2017). | MR

[9] L. Even-Dar Mandel and S. Schochet, Uniform discrete Sobolev estimates of solutions to finite difference schemes for singular limits of nonlinear PDEs. ESAIM: M2AN 51 (2017) 727–757. | DOI | Numdam | MR | Zbl

[10] K.E. Kang, P 1 nonconforming finite element multigrid method for radiation transport. SIAM J. Sci. Comput. 25 (2003) 369–384. | DOI | MR | Zbl

[11] C.T. Kelley, Solving Nonlinear Equations with Newton’s Method. SIAM, Philadephia (2003). | DOI | MR | Zbl

[12] D.A. Knoll, W.J. Rider and G.L. Olson, An efficient nonlinear solution method for non-equilibrium radiation diffusion. J. Quant. Spectrosc. Radiat. Transfer 63 (1999) 15–29. | DOI

[13] D.A. Knoll, W.J. Rider and G.L. Olson, Nonlinear convergence, accuracy, and time step control in non-equilibrium radiation diffusion. J. Quant. Spectrosc. Radiat. Transfer 70 (2001) 25–36. | DOI

[14] D.A. Knoll, R.B. Lowrie and J.E. Morel, Numerical analysis of time integration errors for nonequilibrium radiation diffusion. J. Comput. Phys. 226 (2007) 1332–1347. | DOI | Zbl

[15] O.A. Ladyzhenskaya, V.A. Solonnikov and N.N. Uraltseva, Linear and Quasilinear Equations of Parabolic Type. American Math. Society (1968). | DOI | MR

[16] C.F. Li, Y.R. Yuan and H.L. Song, A mixed volume element with upwind multistep mixed volume element and convergence analysis for numerical simulation of nuclear waste contaminant disposal. J. Comput. Appl. Math. 356 (2019) 164–181. | DOI | MR | Zbl

[17] V.A. Mousseau and D.A. Knoll, Temporal accuracy of the nonequilibrium radiation diffusion equations applied to two-dimensional multimaterial simulation. Nucl. Sci. Eng. 154 (2006) 174–189. | DOI

[18] V.A. Mousseau, D.A. Knoll and W.J. Rider, Physics-based preconditioning and the Newton-Krylov method for non-equilibrium radiation diffusion. J. Comput. Phys. 160 (2000) 743–765. | DOI | Zbl

[19] C.Y. Nie, S. Shu, X.D. Hang and J. Cheng, SFVE schemes for radiative heat conduction problems in cylindrical coordinates and numerical simulations. J. Syst. Simul. 24 (2012) 275–283.

[20] G.L. Olson, Efficient solution of multi-dimensional flux-limited nonequilibrium radiation diffusion coupled to material conduction with second-order time discretization. J. Comput. Phys. 226 (2007) 1181–1195. | DOI | Zbl

[21] M. Pernice and B. Philip, Solution of equilibrium radiation diffusion problems using implicit adaptive mesh refinement. SIAM J. Sci. Comput. 27 (2006) 1709–1726. | DOI | MR | Zbl

[22] R.M. Rauenzahn, V.A. Mousseau and D.A. Knoll, Temporal accuracy of the nonequilibrium radiation diffusion equations employing a Saha ionization model. Comput. Phys. Commun. 172 (2005) 109–118. | DOI

[23] W.J. Rider, D.A. Knoll and G.L. Olson, A multigrid Newton-Krylov method for multidimensional equilibrium radiation diffusion. J. Comput. Phys. 152 (1999) 164–191. | DOI | Zbl

[24] Z.Q. Sheng, J.Y. Yue and G.W. Yuan, Monotone finite volume schemes of nonequilibrium radiation diffusion equations on distorted meshes. SIAM J. Sci. Comput. 31 (2009) 2915–2934. | DOI | MR | Zbl

[25] A.I. Shestakov, J.L. Milovich and M.K. Prasad, Combining cell- and point-centered methods in 3D, unstructured-grid radiation-hydrodynamic codes. J. Comput. Phys. 170 (2001) 81–111. | DOI | Zbl

[26] K.A. Winkler, M.L. Norman and D. Mihalas, Implicit adaptive-grid radiation hydrodynamics. In: Multiple Time Scales. Academic Press, New York (1985). | MR | Zbl

[27] X.B. Yang, W.Z. Huang and J.X. Qiu, A moving mesh finite difference method for equilibrium radiation diffusion equations. J. Comput. Phys. 298 (2015) 661–677. | DOI | MR | Zbl

[28] G.W. Yuan and X.D. Hang, Acceleration methods of nonlinear iteration for nonlinear parabolic equations. J. Comput. Math. 24 (2006) 412–424. | MR | Zbl

[29] G.W. Yuan, X.D. Hang, Z.Q. Sheng and J.Y. Yue, Progress in numerical methods for radiation diffusion equations. Chin. J. Comput. Phys. 26 (2009) 475–500.

[30] G.W. Yuan, Z.Q. Sheng, X.D. Hang, Y.Z. Yao, L.N. Chang and J.Y. Yue, Computational Methods for Diffusion Equation, Science Press, Beijing (2015).

[31] G.W. Yuan, J.Y. Yue, Z.Q. Sheng and L.J. Shen, The computational method for nonlinear parabolic equation. Sci. China Ser. A. 43 (2013) 235–248. | Zbl

[32] J.Y. Yue and G.W. Yuan, Picard-Newton iterative method with time step control for multimaterial non-equilibrium radiation diffusion problem. Commun. Comput. Phys. 10 (2011) 844–866. | DOI | MR | Zbl

[33] Q.H. Zeng, W.B. Pei, J. Cheng and H. Yong, Extension of Kershaw diffusion scheme on multi-block grids. Chin. J. Comput. Phys. 28 (2011) 641–648.

[34] R.P. Zhang, X.J. Yu and J. Zhu, Solution of multimaterial equilibrium radiation diffusion problems by using the discontinuous Galerkin method. Chin. Phys. Lett. 29 (2012) 110201. | DOI

[35] S.C. Zhang, A special problem in the calculation of fluid dynamic equations with radiation. Acta Mech. Sinica 17 (1985) 379–382. | Zbl

[36] X.K. Zhao, Y.L. Chen, Y.N. Gao, C.H. Yu and Y.H. Li, Finite volume element methods for nonequilibrium radiation diffusion equations. Int. J. Numer. Meth. Fluids 73 (2013) 1059–1080. | DOI | MR | Zbl

[37] Y.L. Zhou, Applications of Discrete Functional Analysis to the Finite Difference Method. Inter. Acad. Pub, Beijing (1990) | MR | Zbl

Cité par Sources :