Nonlinear geometric optics based multiscale stochastic Galerkin methods for highly oscillatory transport equations with random inputs
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 6, pp. 1849-1882.

We develop generalized polynomial chaos (gPC) based stochastic Galerkin (SG) methods for a class of highly oscillatory transport equations that arise in semiclassical modeling of non-adiabatic quantum dynamics. These models contain uncertainties, particularly in coefficients that correspond to the potentials of the molecular system. We first focus on a highly oscillatory scalar model with random uncertainty. Our method is built upon the nonlinear geometrical optics (NGO) based method, developed in Crouseilles et al. [Math. Models Methods Appl. Sci. 23 (2017) 2031–2070] for numerical approximations of deterministic equations, which can obtain accurate pointwise solution even without numerically resolving spatially and temporally the oscillations. With the random uncertainty, we show that such a method has oscillatory higher order derivatives in the random space, thus requires a frequency dependent discretization in the random space. We modify this method by introducing a new "time" variable based on the phase, which is shown to be non-oscillatory in the random space, based on which we develop a gPC-SG method that can capture oscillations with the frequency-independent time step, mesh size as well as the degree of polynomial chaos. A similar approach is then extended to a semiclassical surface hopping model system with a similar numerical conclusion. Various numerical examples attest that these methods indeed capture accurately the solution statistics pointwisely even though none of the numerical parameters resolve the high frequencies of the solution.

DOI : 10.1051/m2an/2019094
Classification : 35Q40, 35L03, 4Q10, 65M12
Mots-clés : Highly oscillatory PDEs, nonlinear geometric optics, asymptotic preserving, uncertainty quantification, generalized polynomial chaos, stochastic Galerkin method, surface hopping
@article{M2AN_2020__54_6_1849_0,
     author = {Crouseilles, Nicolas and Jin, Shi and Lemou, Mohammed and Liu, Liu},
     title = {Nonlinear geometric optics based multiscale stochastic {Galerkin} methods for highly oscillatory transport equations with random inputs},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1849--1882},
     publisher = {EDP-Sciences},
     volume = {54},
     number = {6},
     year = {2020},
     doi = {10.1051/m2an/2019094},
     mrnumber = {4150228},
     zbl = {1471.65137},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2019094/}
}
TY  - JOUR
AU  - Crouseilles, Nicolas
AU  - Jin, Shi
AU  - Lemou, Mohammed
AU  - Liu, Liu
TI  - Nonlinear geometric optics based multiscale stochastic Galerkin methods for highly oscillatory transport equations with random inputs
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2020
SP  - 1849
EP  - 1882
VL  - 54
IS  - 6
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2019094/
DO  - 10.1051/m2an/2019094
LA  - en
ID  - M2AN_2020__54_6_1849_0
ER  - 
%0 Journal Article
%A Crouseilles, Nicolas
%A Jin, Shi
%A Lemou, Mohammed
%A Liu, Liu
%T Nonlinear geometric optics based multiscale stochastic Galerkin methods for highly oscillatory transport equations with random inputs
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2020
%P 1849-1882
%V 54
%N 6
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2019094/
%R 10.1051/m2an/2019094
%G en
%F M2AN_2020__54_6_1849_0
Crouseilles, Nicolas; Jin, Shi; Lemou, Mohammed; Liu, Liu. Nonlinear geometric optics based multiscale stochastic Galerkin methods for highly oscillatory transport equations with random inputs. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 6, pp. 1849-1882. doi : 10.1051/m2an/2019094. http://www.numdam.org/articles/10.1051/m2an/2019094/

[1] M. Born and R. Oppenheimer, Zur quantentheorie der molekeln [on the quantum theory of molecules]. Ann. Phys. 389 (1927) 457–484. | DOI | JFM

[2] A. Castro Neto, F. Guinea, N. Peres, K. Novoselov and A. Geim, The electronic properties of graphene. Phys. Mod. Phys. 81 (2009) 109–162. | DOI

[3] L. Chai, S. Jin and Q. Li, Semi-classical models for the Schrödinger equation with periodic potentials and band crossings. Kinet. Relat. Models 6 (2013) 505–532. | DOI | MR | Zbl

[4] L. Chai, S. Jin, Q. Li and O. Morandi, A multiband semiclassical model for surface hopping quantum dynamics. Multiscale Model. Simul. 13 (2015) 205–230. | DOI | MR

[5] P. Chartier, N. Crouseilles, M. Lemou and F. Méhats, Uniformly accurate numerical schemes for highly-oscillatory Klein-Gordon and nonlinear Schrödinger equations. Numer. Math. 129 (2015) 211–250. | DOI | MR | Zbl

[6] H. Choi and J. Liu, The reconstruction of upwind fluxes for conservation laws: its behavior in dynamic and steady state calculations. J. Comput. Phys. 144 (1998) 237–256. | DOI | MR | Zbl

[7] N. Crouseilles, M. Lemou and F. Méhats, Asymptotic preserving schemes for highly-oscillatory Vlasov-Poisson equations. J. Comput. Phys. 248 (2013) 287–308. | DOI | MR | Zbl

[8] N. Crouseilles, S. Jin and M. Lemou, Nonlinear geometric optics method based multi-scale numerical schemes for highly-oscillatory transport equations. Math. Models Methods Appl. Sci. 23 (2017) 2031–2070. | DOI | MR | Zbl

[9] B. Engquist and O. Runborg, Computational high frequency wave propagation. Acta Numer. 12 (2003) 181–266. | DOI | MR | Zbl

[10] C.L. Fefferman and M.I. Weinstein, Honeycomb lattice potentials and Dirac points. J. Am. Math. Soc. 25 (2012) 1169–1220. | DOI | MR | Zbl

[11] R.G. Ghanem and P.D. Spanos, Stochastic Finite Elements: A Spectral Approach. Springer-Verlag, New York (1991). | MR | Zbl

[12] D. Gottlieb and D. Xiu, Galerkin method for wave equations with uncertain coefficients. Commun. Comput. Phys. 3 (2008) 505–518. | MR | Zbl

[13] M.D. Gunzburger, C.G. Webster and G. Zhang, Stochastic finite element methods for partial differential equations with random input data. Acta Numer. 23 (2014) 521–650. | DOI | MR | Zbl

[14] O.P. Le Maître and O.M. Knio, Spectral Methods for Uncertainty Quantification, with Applications to Computational Fluid Dynamics. Scientific Computation. Springer, New York (2010). | MR | Zbl

[15] O. Morandi, Effective classical Liouville-like evolution equation for the quantum phase-space dynamics. J. Phys. A 43 (2010) 365302. | DOI | MR | Zbl

[16] O. Morandi and F. Schürrer, Wigner model for Klein tunneling in graphene. J. Phys. A 44 (2011) 265301. | DOI | Zbl

[17] R.G. Parr, Density Functional Theory of Atoms and Molecules. Horizons of Quantum Chemistry. Springer (1980) 5–15. | DOI

[18] J. Proppe, T. Husch, G.N. Simm and M. Reiher, Uncertainty quantification for quantum chemical models of complex reaction networks. Faraday Discuss. 195 (2017) 497–520. | DOI

[19] B. Ruscic, Uncertainty quantification in thermochemistry, benchmarking electronic structure computations, and active thermochemical tables. Int. J. Quantum Chem. 114 (2014) 1097–1101. | DOI

[20] J. Shen, T. Tang and L.-L. Wang, Spectral Methods: Algorithms, Analysis and Applications. Springer, Heidelberg 41 (2011). | DOI | MR | Zbl

[21] J. Tully, Molecular dynamics with electonic transitions. J. Chem. Phys. 93 (1990) 1061–1071. | DOI

[22] J. Tully, R. Preston, Trajectory surface hopping approach to nonadiabatic molecular collisions: the reaction of h+ with d2.. J. Chem. Phys. 55 (1971) 562–572. | DOI

[23] T. Van Mourik and R.J. Gdanitz, A critical note on density functional theory studies on rare-gas dimers. J. Chem. Phys. 116 (2002) 9620–9623. | DOI

[24] J. Vondrasek, L. Bendova, V. Klusak and P. Hobza, Unexpectedly strong energy stabilization inside the hydrophobic core of small protein rubredoxin mediated by aromatic residues: correlated ab initio quantum chemical calculations. J. Am. Chem. Soc. 127 (2005) 2615–2619. | DOI

[25] B. Wu and Q. Niu, Nonlinear Landau-Zener tunneling. Phys. Rev. A. 61 (2000) 023402. | DOI

[26] D. Xiu, Numerical Methods for Stochastic Computations: A Spectral Method Approach. Princeton University Press, Princeton, NJ, USA (2010). | MR | Zbl

[27] D. Xiu and J.S. Hesthaven, High-order collocation methods for differential equations with random inputs. SIAM J. Sci. Comput. 27 (2005) 1118–1139. | DOI | MR | Zbl

[28] D. Xiu and G.E. Karniadakis, The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24 (2002) 619–644. | DOI | MR | Zbl

Cité par Sources :