Research article
Finite element approximation of elliptic homogenization problems in nondivergence-form
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 4, pp. 1221-1257.

We use uniform W$$ estimates to obtain corrector results for periodic homogenization problems of the form $$ subject to a homogeneous Dirichlet boundary condition. We propose and rigorously analyze a numerical scheme based on finite element approximations for such nondivergence-form homogenization problems. The second part of the paper focuses on the approximation of the corrector and numerical homogenization for the case of nonuniformly oscillating coefficients. Numerical experiments demonstrate the performance of the scheme.

DOI : 10.1051/m2an/2019093
Classification : 35B27, 35J15, 65N12, 65N30
Mots-clés : Homogenization, nondivergence-form elliptic PDE, finite element methods
@article{M2AN_2020__54_4_1221_0,
     author = {Capdeboscq, Yves and Sprekeler, Timo and S\"uli, Endre},
     title = {Finite element approximation of elliptic homogenization problems in nondivergence-form},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1221--1257},
     publisher = {EDP-Sciences},
     volume = {54},
     number = {4},
     year = {2020},
     doi = {10.1051/m2an/2019093},
     mrnumber = {4111657},
     zbl = {1445.35028},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2019093/}
}
TY  - JOUR
AU  - Capdeboscq, Yves
AU  - Sprekeler, Timo
AU  - Süli, Endre
TI  - Finite element approximation of elliptic homogenization problems in nondivergence-form
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2020
SP  - 1221
EP  - 1257
VL  - 54
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2019093/
DO  - 10.1051/m2an/2019093
LA  - en
ID  - M2AN_2020__54_4_1221_0
ER  - 
%0 Journal Article
%A Capdeboscq, Yves
%A Sprekeler, Timo
%A Süli, Endre
%T Finite element approximation of elliptic homogenization problems in nondivergence-form
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2020
%P 1221-1257
%V 54
%N 4
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2019093/
%R 10.1051/m2an/2019093
%G en
%F M2AN_2020__54_4_1221_0
Capdeboscq, Yves; Sprekeler, Timo; Süli, Endre. Finite element approximation of elliptic homogenization problems in nondivergence-form. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 4, pp. 1221-1257. doi : 10.1051/m2an/2019093. http://www.numdam.org/articles/10.1051/m2an/2019093/

A. Abdulle, On a priori error analysis of fully discrete heterogeneous multiscale FEM. Multiscale Model. Simul. 4 (2005) 447–459. | DOI | MR | Zbl

A. Abdulle, The finite element heterogeneous multiscale method: a computational strategy for multiscale PDEs. Multiple Scales Problems in Biomathematics, Mechanics, Physics and Numerics. In: Vol. 31 of GAKUTO Internat. Biomathematics, Mechanics, Physics and Numerics. Ser. Math. Sci. Appl. Gakkotosho, Tokyo (2009) 133–181. | MR | Zbl

A. Abdulle and M.E. Huber, Finite element heterogeneous multiscale method for nonlinear monotone parabolic homogenization problems. ESAIM: M2AN 50 (2016) 1659–1697. | DOI | Numdam | MR | Zbl

A. Abdulle and T. Pouchon, A priori error analysis of the finite element heterogeneous multiscale method for the wave equation over long time. SIAM J. Numer. Anal. 54 (2016) 1507–1534. | DOI | MR | Zbl

A. Abdulle, W.E.B. Engquist and E. Vanden-Eijnden, The heterogeneous multiscale method. Acta Numer. 21 (2012) 1–87. | DOI | MR | Zbl

G. Allaire, Shape optimization by the homogenization method. In: Vol. 146 of Applied Mathematical Sciences. Springer-Verlag, New York (2002). | DOI | MR | Zbl

G. Allaire and R. Orive, Homogenization of periodic non self-adjoint problems with large drift and potential. ESAIM: COCV 13 (2007) 735–749. | Numdam | MR | Zbl

G. Allaire and A.-L. Raphael, Homogenization of a convection-diffusion model with reaction in a porous medium. C. R. Math. Acad. Sci. Paris 344 (2007) 523–528. | DOI | MR | Zbl

D. Arjmand and G. Kreiss, An equation-free approach for second order multiscale hyperbolic problems in non-divergence form. Commun. Math. Sci. 16 (2018) 2317–2343. | DOI | MR

M. Avellaneda and F.-H. Lin, Compactness methods in the theory of homogenization. II. Equations in nondivergence form. Comm. Pure Appl. Math. 42 (1989) 139–172. | DOI | MR | Zbl

M. Avellaneda and F.-H. Lin, L p bounds on singular integrals in homogenization. Comm. Pure Appl. Math. 44 (1991) 897–910. | DOI | MR | Zbl

I. Babuška, Computation of derivatives in the finite element method. Comment. Math. Univ. Carolinae 11 (1970) 545–558. | MR | Zbl

A. Bensoussan, L. Boccardo and F. Murat, Homogenization of elliptic equations with principal part not in divergence form and Hamiltonian with quadratic growth. Comm. Pure Appl. Math. 39 (1986) 769–805. | DOI | MR | Zbl

A. Bensoussan, J.-L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures . Corrected reprint of the 1978 original. AMS Chelsea Publishing, Providence, RI (2011). | MR | Zbl

V.I. Bogachev and S.V. Shaposhnikov, Integrability and continuity of solutions to double divergence form equations. Ann. Mat. Pura Appl. 196 (2017) 1609–1635. | DOI | MR

V.I. Bogachev, N.V. Krylov and M. Röckner, On regularity of transition probabilities and invariant measures of singular diffusions under minimal conditions. Comm. Partial Differ. Equ. 26 (2001) 2037–2080. | MR | Zbl

Y. Capdeboscq, Homogenization of a diffusion equation with drift. C. R. Acad. Sci. Paris Sér. I Math. 327 (1998) 807–812. | DOI | MR | Zbl

D. Cioranescu and P. Donato, An introduction to homogenization. In: Vol. 17 Oxford Lecture Series in Mathematics and its Applications. The Clarendon Press, Oxford University Press, New York (1999). | MR | Zbl

Y. Efendiev and T.Y. Hou, Multiscale finite element methods. Theory and applications. In: Vol. 4 ofSurveys and Tutorials in the Applied Mathematical Sciences. Springer, New York (2009). | MR | Zbl

A. Fannjiang and G. Papanicolaou, Convection enhanced diffusion for periodic flows. SIAM J. Appl. Math. 54 (1994) 333–408. | DOI | MR | Zbl

X. Feng, L. Hennings and M. Neilan, Finite element methods for second order linear elliptic partial differential equations in non-divergence form. Math. Comput. 86 (2017) 2025–2051. | DOI | MR

B.D. Froese and A.M. Oberman, Numerical averaging of non-divergence structure elliptic operators. Commun. Math. Sci. 7 (2009) 785–804. | DOI | MR | Zbl

D. Gallistl, Variational formulation and numerical analysis of linear elliptic equations in nondivergence form with Cordes coefficients. SIAM J. Numer. Anal. 55 (2017) 737–757. | DOI | MR

D. Gallistl and E. Süli, Mixed finite element approximation of the Hamilton–Jacobi–Bellman equation with Cordes coefficients. SIAM J. Numer. Anal. 57 (2019) 592–614. | DOI | MR

D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order. Reprint of the 1998 edition. Classics in Mathematics. Springer-Verlag, Berlin (2001). | MR | Zbl

P. Grisvard, Elliptic problems in nonsmooth domains. In: Vol. 69 of Classics in Applied Mathematics. Reprint of the 1985 original. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2011). | MR | Zbl

F. Hecht, New development in FreeFem++. J. Numer. Math. 20 (2012) 251–265. | DOI | MR | Zbl

T. Hell and A. Ostermann, Compatibility conditions for Dirichlet and Neumann problems of Poisson’s equation on a rectangle. J. Math. Anal. Appl. 420 (2014) 1005–1023. | DOI | MR | Zbl

T. Hell, A. Ostermann and M. Sandbichler, Modification of dimension-splitting methods – overcoming the order reduction due to corner singularities. IMA J. Numer. Anal. 35 (2015) 1078–1091. | DOI | MR

P. Henning and M. Ohlberger, A note on homogenization of advection-diffusion problems with large expected drift. Z. Anal. Anwend. 30 (2011) 319–339. | DOI | MR | Zbl

G. Iyer, T. Komorowski, A. Novikov and L. Ryzhik, From homogenization to averaging in cellular flows. Ann. Inst. Henri Poincaré Anal. Non Linéaire 31 (2014) 957–983. | DOI | Numdam | MR | Zbl

T. Kinoshita, Y. Watanabe, N. Yamamoto and M.T. Nakao, Some remarks on a priori estimates of highly regular solutions for the Poisson equation in polygonal domains. Jpn. J. Ind. Appl. Math. 33 (2016) 629–636. | DOI | MR

O. Lakkis and T. Pryer, A finite element method for second order nonvariational elliptic problems. SIAM J. Sci. Comput. 33 (2011) 786–801. | DOI | MR | Zbl

A.H. Schatz, An observation concerning Ritz-Galerkin methods with indefinite bilinear forms. Math. Comput. 28 (1974) 959–962. | DOI | MR | Zbl

I. Smears and E. Süli, Discontinuous Galerkin finite element approximation of nondivergence form elliptic equations with Cordès coefficients. SIAM J. Numer. Anal. 51 (2013) 2088–2106. | DOI | MR | Zbl

I. Smears and E. Süli, Discontinuous Galerkin finite element approximation of Hamilton-Jacobi-Bellman equations with Cordes coefficients. SIAM J. Numer. Anal. 52 (2014) 993–1016. | DOI | MR | Zbl

L. Tartar, The general theory of homogenization. A personalized introduction. In: Vol. 7 of Lecture Notes of the Unione Matematica Italiana. Springer-Verlag, Berlin; UMI, Bologna (2009). | MR | Zbl

W.E.B. Engquist, The heterogeneous multiscale methods. Commun. Math. Sci. 1 (2003) 87–132. | DOI | MR | Zbl

Cité par Sources :