A finite element method for the generalized Ericksen model of nematic liquid crystals
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 4, pp. 1181-1220.

We consider the generalized Ericksen model of liquid crystals, which is an energy with 8 independent “elastic”constants that depends on two order parameters n (director) and s (variable degree of orientation). In addition, we present a new finite element discretization for this energy, that can handle the degenerate elliptic part without regularization, with the following properties: it is stable and it Γ-converges to the continuous energy. Moreover, it does not require the mesh to be weakly acute (which was an important assumption in our previous work). Furthermore, we include other effects such as weak anchoring (normal and tangential), as well as fully coupled electro-statics with flexo-electric and order-electric effects. We also present several simulations (in 2-D and 3-D) illustrating the effects of the different elastic constants and electric field parameters.

DOI : 10.1051/m2an/2019092
Classification : MSC 65N30, 49M25, 35J70
Mots-clés : Liquid crystals, defects, finite element method, gamma-convergence, flexo-electric
@article{M2AN_2020__54_4_1181_0,
     author = {Walker, Shawn W.},
     title = {A finite element method for the generalized {Ericksen} model of nematic liquid crystals},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1181--1220},
     publisher = {EDP-Sciences},
     volume = {54},
     number = {4},
     year = {2020},
     doi = {10.1051/m2an/2019092},
     mrnumber = {4099210},
     zbl = {1446.65181},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2019092/}
}
TY  - JOUR
AU  - Walker, Shawn W.
TI  - A finite element method for the generalized Ericksen model of nematic liquid crystals
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2020
SP  - 1181
EP  - 1220
VL  - 54
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2019092/
DO  - 10.1051/m2an/2019092
LA  - en
ID  - M2AN_2020__54_4_1181_0
ER  - 
%0 Journal Article
%A Walker, Shawn W.
%T A finite element method for the generalized Ericksen model of nematic liquid crystals
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2020
%P 1181-1220
%V 54
%N 4
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2019092/
%R 10.1051/m2an/2019092
%G en
%F M2AN_2020__54_4_1181_0
Walker, Shawn W. A finite element method for the generalized Ericksen model of nematic liquid crystals. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 4, pp. 1181-1220. doi : 10.1051/m2an/2019092. http://www.numdam.org/articles/10.1051/m2an/2019092/

[1] J.H. Adler, T.J. Atherton, T.R. Benson, D.B. Emerson and S.P. Maclachlan, Energy minimization for liquid crystal equilibrium with electric and flexoelectric effects. SIAM J. Sci. Comput. 37 (2015) S157–S176. | DOI | MR

[2] J.H. Adler, T.J. Atherton, D.B. Emerson and S.P. Maclachlan, An energy-minimization finite-element approach for the Frank-Oseen model of nematic liquid crystals. SIAM J. Numer. Anal. 53 (2015) 2226–2254. | DOI | MR

[3] J.H. Adler, D.B. Emerson, S.P. Maclachlan and T.A. Manteuffel, Constrained optimization for liquid crystal equilibria. SIAM J. Sci. Comput. 38 (2016) B50–B76. | DOI | MR

[4] F. Alouges, A new algorithm for computing liquid crystal stable configurations: the harmonic mapping case. SIAM J. Numer. Anal. 34 (1997) 1708–1726. | DOI | MR | Zbl

[5] L. Ambrosio, Existence of minimal energy configurations of nematic liquid crystals with variable degree of orientation. Manuscripta Math. 68 (1990) 215–228. | DOI | MR | Zbl

[6] L. Ambrosio, Regularity of solutions of a degenerate elliptic variational problem. Manuscripta Math. 68 (1990) 309–326. | DOI | MR | Zbl

[7] T. Araki and H. Tanaka, Colloidal aggregation in a nematic liquid crystal: topological arrest of particles by a single-stroke disclination line. Phys. Rev. Lett. 97 (2006) 127801. | DOI

[8] J. Arsuaga, R.K.-Z. Tan, M. Vazquez, D.W. Sumners and S.C. Harvey, Investigation of viral dna packaging using molecular mechanics models. Biophys. Chem. 101–102 (2002) 475–484. Special issue in honour of John A Schellman. | DOI

[9] S. Badia, F.M. Guillén-González and J.V. Gutiérrez-Santacreu, An overview on numerical analyses of nematic liquid crystal flows. Arch. Comput. Methods Eng. 18 (2011) 285–313. | DOI | MR | Zbl

[10] J.M. Ball, Mathematics and liquid crystals. Mol. Cryst. Liq. Cryst. 647 (2017) 1–27. | DOI

[11] J.M. Ball and A. Zarnescu, Orientable and non-orientable director fields for liquid crystals. Proc. Appl. Math. Mech. 7 (2007) 1050701–1050704. | DOI

[12] J.M. Ball and A. Zarnescu, Orientability and energy minimization in liquid crystal models. Arch. Ration. Mech. Anal. 202 (2011) 493–535. | DOI | MR | Zbl

[13] G. Barbero and G. Durand, On the validity of the rapini-papoular surface anchoring energy form in nematic liquid crystals. J. Phys. Fr. 47 (1986) 2129–2134. | DOI

[14] J.W. Barrett, X. Feng and A. Prohl, Convergence of a fully discrete finite element method for a degenerate parabolic system modelling nematic liquid crystals with variable degree of orientation. ESAIM: M2AN 40 (2006) 175–199. | DOI | Numdam | MR | Zbl

[15] S. Bartels, Numerical analysis of a finite element scheme for the approximation of harmonic maps into surfaces. Math. Comput. 79 (2010) 1263–1301. | DOI | MR | Zbl

[16] P. Bauman, M.C. Calderer, C. Liu and D. Phillips, The phase transition between chiral nematic and smectic a* liquid crystals. Arch. Ration. Mech. Anal. 165 (2002) 161–186. | DOI | MR | Zbl

[17] D.W. Berreman and S. Meiboom, Tensor representation of Oseen-Frank strain energy in uniaxial cholesterics. Phys. Rev. A 30 (1984) 1955–1959. | DOI

[18] F. Bethuel, H. Brezis and F. Hélein, Ginzburg-Landau vortices. In: Vol. 13 of Progress in Nonlinear Differential Equations and their Applications. Birkhäuser Boston Inc., Boston, MA (1994). | MR | Zbl

[19] P. Biscari and P. Cesana, Ordering effects in electric splay freedericksz transitions. Continuum Mech. Thermodyn. 19 (2007) 285–298. | DOI | MR | Zbl

[20] L. Blinov, Electro-optical and Magneto-optical Properties of Liquid Crystals. Wiley (1983).

[21] A. Braides, Gamma-convergence for beginners. In: Vol. 22 of Oxford Lecture Series in Mathematics and Its Applications. Oxford Scholarship (2002). | MR | Zbl

[22] S.C. Brenner and L.R. Scott, The mathematical theory of finite element methods, 3rd edition. In: Vol. 15 of Texts in Applied Mathematics. Springer, New York, NY (2008). | MR | Zbl

[23] H. Brezis, J.-M. Coron and E.H. Lieb, Harmonic maps with defects. Commun. Math. Phys. 107 (1986) 649–705. | DOI | MR | Zbl

[24] Á. Buka and N. Éber, editors, Flexoelectricity in Liquid Crystals: Theory, Experiments and Applications. World Scientific (2012). | DOI

[25] M. Calderer, D. Golovaty, F. Lin and C. Liu, Time evolution of nematic liquid crystals with variable degree of orientation. SIAM J. Math. Anal. 33 (2002) 1033–1047. | DOI | MR | Zbl

[26] P.G. Ciarlet, The finite element method for elliptic problems, 2nd edition. In: Classics in Applied Mathematics. SIAM, Philadelphia, PA (2002). | MR

[27] P.G. Ciarlet, Linear and Nonlinear Functional Analysis with Applications, 1st edition.. SIAM (2013). | MR | Zbl

[28] R. Cohen, S.-Y. Lin and M. Luskin, Relaxation and gradient methods for molecular orientation in liquid crystals. Comput. Phys. Commun. 53 (1989) 455–465. | DOI | MR

[29] S. Čopar, U. Tkalec, I. Muševič and S. Žumer, Knot theory realizations in nematic colloids. Proc. Natl. Acad. Sci. 112 (2015) 1675–1680. | DOI | MR

[30] P.A. Cruz, M.F. Tomé, I.W. Stewart and S. Mckee, Numerical solution of the Ericksen-Leslie dynamic equations for two-dimensional nematic liquid crystal flows. J. Comput. Phys. 247 (2013) 109–136. | DOI | MR

[31] G. Dal Maso, An introduction to Γ -convergence. In: Vol. 8 of Progress in Nonlinear Differential Equations and their Applications. Birkhäuser Boston Inc, Boston, MA (1993). | MR | Zbl

[32] P.G. De Gennes and J. Prost, The Physics of Liquid Crystals, 2nd edition. In: Vol. 83 of International Series of Monographs on PhysicsOxford Science Publication, Oxford, UK (1995).

[33] A.E. Diegel and S.W. Walker, A finite element method for a phase field model of nematic liquid crystal droplets. Commun. Comput. Phys. 25 (2019) 155–188. | DOI | MR

[34] J. Ericksen, Liquid crystals with variable degree of orientation. Arch. Ration. Mech. Anal. 113 (1991) 97–120. | DOI | MR | Zbl

[35] L.C. Evans, Partial Differential Equations. American Mathematical Society, Providence, Rhode Island (1998). | Zbl

[36] R.P. Feynman, R.B. Leighton and M. Sands, The Feynman Lectures on Physics. Addison-Wesley Publishing Company (1964). | MR

[37] F.C. Frank, I. Liquid crystals. On the theory of liquid crystals. Discuss. Faraday Soc. 25 (1958) 19–28. | DOI

[38] E.C. Gartland Jr., Liquid Crystal Director Models with Coupled Electric Fields. Seminar given at the Newton Institute, Spring (2013).

[39] E.C. Gartland Jr., Scalings and limits of landau-de gennes models for liquid crystals: a comment on some recent analytical papers. Math. Model. Anal. 23 (2018) 414–432. | DOI | MR

[40] E.C. Gartland Jr. and A. Ramage, A renormalized newton method for liquid crystal director modeling. SIAM J. Numer. Anal. 53 (2015) 251–278. | DOI | MR

[41] D. Golovaty, L. Gross, S. Hariharan and E.C. Gartland Jr., On instability of a bend fréedericksz configuration in nematic liquid crystals. J. Math. Anal. Appl. 255 (2001) 391–403. | DOI | MR | Zbl

[42] J.W. Goodby, Introduction to defect textures in liquid crystals. In: Handbook of Visual Display Technology. Edited by J. Chen, W. Cranton and M. Fihn. Springer (2012) 1290–1314.

[43] Y. Gu and N.L. Abbott, Observation of saturn-ring defects around solid microspheres in nematic liquid crystals. Phys. Rev. Lett. 85 (2000) 4719–4722. | DOI

[44] I.U. Haq, W.N. Chaudhry, M.N. Akhtar, S. Andleeb and I. Qadri, Bacteriophages and their implications on future biotechnology: a review. Virol. J. 9 (2012) 9. | DOI

[45] R. Hardt, D. Kinderlehrer and F.-H. Lin, Stable defects of minimizers of constrained variational principles. Ann. Inst. Henri Poincare (C) Anal. Non linéaire 5 (1988) 297–322. | DOI | Numdam | MR | Zbl

[46] R. Hardt, D. Kinderlehrer and M. Luskin, Remarks about the mathematical theory of liquid crystals. In: Calculus of Variations and Partial Differential Equations. Edited by S. Hildebrandt, D. Kinderlehrer and M. Miranda. Vol. 1340 of Lecture Notes in Mathematics. Springer, Berlin Heidelberg (1988) 123–138. | MR | Zbl

[47] J. Hoogboom, J.A. Elemans, A.E. Rowan, T.H. Rasing and R.J. Nolte, The development of self-assembled liquid crystal display alignment layers. Philos. Trans. R. Soc. London A: Math. Phys. Eng. Sci. 365 (2007) 1553–1576.

[48] A. Kilian and S. Hess, Derivation and application of an algorithm for the numerical calculation of the local orientation of nematic liquid crystals. Z. Naturforsch. A 44 (1989) 693–703. | DOI

[49] D. Kinderlehrer, N. Walkington and B. Ou, The elementary defects of the Oseen-Frank energy for a liquid crystalResearch report (Carnegie Mellon University. Department of Mathematics. Center for Nonlinear Analysis), Carnegie Mellon University, Department of Mathematics [Center for Nonlinear Analysis] (1993). | MR | Zbl

[50] W.S. Klug, M.T. Feldmann and M. Ortiz, Three-dimensional director-field predictions of viral DNA packing arrangements. Comput. Mech. 35 (2005) 146–152. | DOI | Zbl

[51] S. Korotov, M. Křížek and P. Neittaanmäkia, Weakened acute type condition for tetrahedral triangulations and the discrete maximum principle. Math. Comput. 70 (2001) 107–119. | DOI | MR | Zbl

[52] M. Křížek, J. Šolc, Acute versus nonobtuse tetrahedralizations, In: Conjugate Gradient Algorithms and Finite Element Methods. Edited by M. Křížek, P. Neittaanmäki, S. Korotov, R. Glowinski. Scientific Computation. Springer, Berlin Heidelberg (2004) 161–170. | DOI | MR | Zbl

[53] J.P. Lagerwall and G. Scalia, A new era for liquid crystal research: applications of liquid crystals in soft matter nano-, bio- and microtechnology. Curr. Appl. Phys. 12 (2012) 1387–1412. | DOI

[54] L.D. Landau, E.M. Lifshitz, Electrodynamics of continuous media. In: Vol. 8 of Course of Theoretical Physics. Addison-Wesley (1960). | MR | Zbl

[55] F.-H. Lin, Nonlinear theory of defects in nematic liquid crystals; phase transition and flow phenomena. Commun. Pure Appl. Math. 42 (1989) 789–814. | DOI | MR | Zbl

[56] F.H. Lin, On nematic liquid crystals with variable degree of orientation. Commun. Pure Appl. Math. 44 (1991) 453–468. | DOI | MR | Zbl

[57] S.-Y. Lin and M. Luskin, Relaxation methods for liquid crystal problems. SIAM J. Numer. Anal. 26 (1989) 1310–1324. | DOI | MR | Zbl

[58] T. Liu, U. Sae-Ueng, D. Li, G.C. Lander, X. Zuo, B. Jönsson, D. Rau, I. Shefer and A. Evilevitch, Solid-to-fluid-like dna transition in viruses facilitates infection. Proc. Natl. Acad. Sci. 111 (2014) 14675–14680. | DOI

[59] A. Majumdar, Equilibrium order parameters of nematic liquid crystals in the landau-de gennes theory. Eur. J. Appl. Math. 21 (2010) 181–203. | DOI | MR | Zbl

[60] D. Marenduzzo, E. Orlandini, A. Stasiak, D.W. Sumners, L. Tubiana and C. Micheletti, DNA–DNA interactions in bacteriophage capsids are responsible for the observed DNA knotting. Proc. Natl. Acad. Sci. 106 (2009) 22269–22274. | DOI

[61] H. Mori, E.C. Gartland Jr., J.R. Kelly and P.J. Bos, Multidimensional director modeling using the Q tensor representation in a liquid crystal cell and its application to the pi-cell with patterned electrodes. Jpn. J. Appl. Phys. 38 (1999) 135. | DOI

[62] S.M. Morris, M.J. Clarke, A.E. Blatch and H.J. Coles, Structure-flexoelastic properties of bimesogenic liquid crystals. Phys. Rev. E 75 (2007) 041701. | DOI

[63] A. Morvant, E. Seal and S.W. Walker, A coupled ericksen/Allen–Cahn model for liquid crystal droplets. Comput. Math. Appl. 75 (2018) 4048–4065. | DOI | MR | Zbl

[64] N.J. Mottram and C.J.P. Newton, Introduction to Q-tensor theory. Preprint arXiv:1409.3542 (2014).

[65] A. Napov and Y. Notay, Algebraic analysis of aggregation-based multigrid. Numer. Linear Algebra Appl. 18 (2011) 539–564. | DOI | MR | Zbl

[66] A. Napov and Y. Notay, An algebraic multigrid method with guaranteed convergence rate. SIAM J. Sci. Comput. 34 (2012) A1079–A1109. | DOI | MR | Zbl

[67] E.D. Nezza, G. Palatucci and E. Valdinoci, Hitchhiker’s guide to the fractional sobolev spaces. Bull. Sci. Math 136 (2012) 521–573. | DOI | MR | Zbl

[68] J. Nocedal and S.J. Wright, Numerical Optimization, 2nd edition. Springer Series in Operations Research. Springer (2006). | MR | Zbl

[69] R.H. Nochetto, S.W. Walker and W. Zhang, Numerics for liquid crystals with variable degree of orientation. In: Vol. 1753 of Symposium NN – Mathematical and Computational Aspects of Materials Science. MRS Proceedings (2015).

[70] R.H. Nochetto, S.W. Walker and W. Zhang, A finite element method for nematic liquid crystals with variable degree of orientation. SIAM J. Numer. Anal. 55 (2017) 1357–1386. | DOI | MR | Zbl

[71] R.H. Nochetto, S.W. Walker and W. Zhang, The ericksen model of liquid crystals with colloidal and electric effects. J. Comput. Phys. 352 (2018) 568–601. | DOI | MR | Zbl

[72] Y. Notay, An aggregation-based algebraic multigrid method. Electron. Trans. Numer. Anal. 37 (2010) 123–146. | MR | Zbl

[73] Y. Notay, Aggregation-based algebraic multigrid for convection-diffusion equations. SIAM J. Sci. Comput. 34 (2012) A2288–A2316. | DOI | MR | Zbl

[74] M. Paicu and A. Zarnescu, Energy dissipation and regularity for a coupled Navier-Stokes and Q-tensor system. Arch. Ration. Mech. Anal. 203 (2012) 45–67. | DOI | MR | Zbl

[75] R. Perkins, Liquid crystal. http://www.teachersource.com/downloads/lesson_pdf/LC-AST.pdf (2009).

[76] E.B. Priestley, P.J. Wojtowicz and P. Sheng, Introduction to Liquid Crystals. Plenum Press, New York (1975). | DOI

[77] A. Ramage and E.C. Gartland Jr., A preconditioned nullspace method for liquid crystal director modeling. SIAM J. Sci. Comput. 35 (2013) B226–B247. | DOI | MR | Zbl

[78] T. Roques-Carmes, R.A. Hayes, B.J. Feenstra and L.J.M. Schlangen, Liquid behavior inside a reflective display pixel based on electrowetting. J. Appl. Phys. 95 (2004) 4389–4396. | DOI

[79] U. Sae-Ueng, D. Li, X. Zuo, J.B. Huffman, F.L. Homa, D. Rau and A. Evilevitch, Solid-to-fluid DNA transition inside HSV-1 capsid close to the temperature of infection. Nat. Chem. Biol. 10 (2014) 861–867. | DOI

[80] R. Schoen and K. Uhlenbeck, A regularity theory for harmonic maps. J. Differ. Geom. 17 (1982) 307–335. | DOI | MR | Zbl

[81] B. Senyuk, Liquid crystals: a simple view on a complex matter. http://www.personal.kent.edu/bisenyuk/liquidcrystals/ (2010).

[82] J. Shen and X. Yang, Numerical approximations of Allen-Cahn and Cahn-Hilliard equations. Dis. Cont. Dyn. Syst. 28 (2010) 1669–1691. | DOI | MR | Zbl

[83] J. Shen and X. Yang, A phase-field model and its numerical approximation for two-phase incompressible flows with different densities and viscosities. SIAM J. Sci. Comput. 32 (2010) 1159–1179. | DOI | MR | Zbl

[84] A.M. Sonnet and E. Virga, Dissipative Ordered Fluids: Theories for Liquid Crystals. Springer (2012). | DOI | MR | Zbl

[85] K. Tojo, A. Furukawa, T. Araki and A. Onuki, Defect structures in nematic liquid crystals around charged particles. Eur. Phys. J. E 30 (2009) 55–64. | DOI

[86] E. Vanderzee, A.N. Hirani, V. Zharnitsky and D. Guoy, A dihedral acute triangulation of the cube. Comput. Geom. 43 (2010) 445–452. | DOI | MR | Zbl

[87] E.G. Virga, Variational Theories for Liquid Crystals, 1st edition. Chapman and Hall, London 43 (1994). | MR | Zbl

[88] S.W. Walker, FELICITY: a Matlab/C++ toolbox for developing finite element methods and simulation modeling. SIAM J. Sci. Comput. 40 (2018) C234–C257. | DOI | MR | Zbl

[89] S.W. Walker, On the Correct Thermo-dynamic Potential for Electro-static Dielectric Energy. Preprint arXiv:1803.08136 (2018).

[90] R.L. Wheeden and A. Zygmund, Measure and Integral: An Introduction to Real Analysis, 2nd edition, CRC Press (2015). | MR

[91] S.M. Wise, C. Wang and J.S. Lowengrub, An energy-stable and convergent finite-difference scheme for the phase field crystal equation. SIAM J. Numer. Anal. 47 (2009) 2269–2288. | DOI | MR | Zbl

[92] C. Zhang, X. Zhang, A. Acharya, D. Golovaty and N. Walkington, A non-traditional view on the modeling of nematic disclination dynamics. Q. Appl. Math. 75 (2017) 309–357. | DOI | MR | Zbl

Cité par Sources :