Research Article
Localization and geometrization in plasmon resonances and geometric structures of Neumann-Poincaré eigenfunctions
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 3, pp. 957-976.

This paper reports some interesting discoveries about the localization and geometrization phenomenon in plasmon resonances and the intrinsic geometric structures of Neumann-Poincaré eigenfunctions. It is known that plasmon resonance generically occurs in the quasi-static regime where the size of the plasmonic inclusion is sufficiently small compared to the wavelength. In this paper, we show that the global smallness condition on the plasmonic inclusion can be replaced by a local high-curvature condition, and the plasmon resonance occurs locally near the high-curvature point of the plasmonic inclusion. We link this phenomenon with the geometric structures of the Neumann-Poincaré (NP) eigenfunctions. The spectrum of the Neumann-Poincaré operator has received significant attentions in the literature. We show that the Neumann-Poincaré eigenfunctions possess some intrinsic geometric structures near the high-curvature points. We mainly rely on numerics to present our findings. For a particular case when the domain is an ellipse, we can provide the analytic results based on the explicit solutions.

DOI : 10.1051/m2an/2019091
Classification : 35Q60, 47G40, 35B30, 35R30
Mots-clés : Plasmonics, localization, geometrization, high-curvature, Neumann-Poincaré eigenfunctions
@article{M2AN_2020__54_3_957_0,
     author = {Bl\r{a}sten, Emilia and Li, Hongjie and Liu, Hongyu and Wang, Yuliang},
     title = {Localization and geometrization in plasmon resonances and geometric structures of {Neumann-Poincar\'e} eigenfunctions},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {957--976},
     publisher = {EDP-Sciences},
     volume = {54},
     number = {3},
     year = {2020},
     doi = {10.1051/m2an/2019091},
     mrnumber = {4085713},
     zbl = {1437.35647},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2019091/}
}
TY  - JOUR
AU  - Blåsten, Emilia
AU  - Li, Hongjie
AU  - Liu, Hongyu
AU  - Wang, Yuliang
TI  - Localization and geometrization in plasmon resonances and geometric structures of Neumann-Poincaré eigenfunctions
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2020
SP  - 957
EP  - 976
VL  - 54
IS  - 3
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2019091/
DO  - 10.1051/m2an/2019091
LA  - en
ID  - M2AN_2020__54_3_957_0
ER  - 
%0 Journal Article
%A Blåsten, Emilia
%A Li, Hongjie
%A Liu, Hongyu
%A Wang, Yuliang
%T Localization and geometrization in plasmon resonances and geometric structures of Neumann-Poincaré eigenfunctions
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2020
%P 957-976
%V 54
%N 3
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2019091/
%R 10.1051/m2an/2019091
%G en
%F M2AN_2020__54_3_957_0
Blåsten, Emilia; Li, Hongjie; Liu, Hongyu; Wang, Yuliang. Localization and geometrization in plasmon resonances and geometric structures of Neumann-Poincaré eigenfunctions. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 3, pp. 957-976. doi : 10.1051/m2an/2019091. http://www.numdam.org/articles/10.1051/m2an/2019091/

[1] H. Ammari, G. Ciraolo, H. Kang, H. Lee and G.W. Milton, Spectral theory of a Neumann–Poincaré-type operator and analysis of cloaking due to anomalous localized resonance. Arch. Ration. Mech. Anal. 208 (2013) 667–692. | DOI | MR | Zbl

[2] H. Ammari, G. Ciraolo, H. Kang, H. Lee and G.W. Milton, Spectral theory of a Neumann–Poincaré-type operator and analysis of cloaking due to anomalous localized resonance II. Contemp. Math. 615 (2014) 1–14. | DOI | MR

[3] H. Ammari, Y. Deng and P. Millien, Surface plasmon resonance of nanoparticles and applications in imaging. Arch. Ration. Mech. Anal. 220 (2016) 109–153. | DOI | MR

[4] H. Ammari, B. Fitzpatrick, H. Kang, M. Ruiz, S. Yu and H. Zhang, Mathematical and computational methods in photonics and phononics, In Vol. 235 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (2018). | MR

[5] H. Ammari, P. Millien, M. Ruiz and H. Zhang, Mathematical analysis of plasmonic nanoparticles: The scalar case. Arch. Ration. Mech. Anal. 224 (2017) 597–658. | DOI | MR

[6] H. Ammari, M. Ruiz, S. Yu and H. Zhang, Mathematical analysis of plasmonic resonances for nanoparticles: The full Maxwell equations. J. Differ. Equ. 261 (2016) 3615–3669. | DOI | MR

[7] K. Ando, Y. Ji, H. Kang, K. Kim and S. Yu, Spectral properties of the Neumann-Poincaré operator and cloaking by anomalous localized resonance for the elastostatic system. Eur. J. Appl. Math. 29 (2018) 189–225. | DOI | MR

[8] K. Ando, Y. Ji, H. Kang, K. Kim and S. Yu, Cloaking by anomalous localized resonance for linear elasticity on a coated structure. SIAM J. Math. Anal. 49 (2017) 4232–4250.

[9] K. Ando, H. Kang and H. Liu, Plasmon resonance with finite frequencies: A validation of the quasi-static approximation for diametrically small inclusions. SIAM J. Appl. Math. 76 (2016) 731–749. | DOI | MR

[10] K. Ando, H. Kang and Y. Miyanishi, Elastic Neumann-Poincaré operators on three dimensional smooth domains: Polynomial compactness and spectral structure. Int. Math. Res. Not. 2019 (2019) 3883–3900. | DOI | MR

[11] K. Ando, H. Kang and Y. Miyanishi, Spectral structure of elastic Neumann-Poincaré operators. J. Phys.: Conf. Ser. 965 (2018) 012027.

[12] E. Blåsten and H. Liu, Scattering by curvatures, radiationless sources, transmission eigenfunctions and inverse scattering problems, Preprint: (2018). | arXiv | MR

[13] G. Bouchitté and B. Schweizer, Cloaking of small objects by anomalous localized resonance. Q. J. Mech. Appl. Math. 63 (2010) 438–463. | DOI | MR | Zbl

[14] O.P. Bruno and S. Lintner, Superlens-cloaking of small dielectric bodies in the quasistatic regime. J. Appl. Phys. 102 (2007) 124502. | DOI

[15] D. Chung, H. Kang, K. Kim and H. Lee, Cloaking due to anomalous localized resonance in plasmonic structures of confocal ellipses. SIAM J. Appl. Math. 74 (2014) 1691–1707. | DOI | MR | Zbl

[16] Y. Deng, H. Li and H. Liu, On spectral properties of Neumann-Poincaré operator and plasmonic resonances in 3D elastostatics. J. Spectr. Theory 9 (2019) 767–789. | DOI | MR

[17] Y. Deng, H. Li and H. Liu, Analysis of surface polariton resonance for nanoparticles in elastic system. Preprint: (2018). | arXiv | MR

[18] E. Blåsten, H. Li, H. Liu, Y. Wang, Localization and geometrization in plasmon resonances and geometric structures of Neumann-Poincaré eigenfunctions. Preprint: (2018). | arXiv | Numdam | MR

[19] J. Helsing, H. Kang and M. Lim, Classification of spectra of the Neumann-Poincaré operator on planar domains with corners by resonance. Ann. Inst. Henri. Poincaré-AN 34 (2017) 991–1011. | DOI | Numdam | MR

[20] Y. Ji and H. Kang, A concavity condition for existence of a negative Neumann-Poincaré eigenvalue in three dimensions. Preprint: (2018). | arXiv

[21] H. Kang and D. Kawagoe, Surface Riesz transforms and spectral property of elasticNeumann–Poincaré operators on less smooth domains in three dimensions. Preprint: (2018). | arXiv

[22] H. Kang, M. Lim and S. Yu, Spectral resolution of the Neumann-Poincaré operator on intersecting disks and analysis of plasmon resonance. Arch. Ration. Mech. Anal. 226 (2017) 83–115. | DOI | MR

[23] H. Kettunen, M. Lassas and P. Ola, On absence and existence of the anomalous localized resonace without the quasi-static approximation. SIAM J. Appl. Math. 78 (2018) 609–628. | DOI | MR

[24] D.M. Kochmann and G.W. Milton, Rigorous bounds on the effective moduli of composites and inhomogeneous bodies with negative-stiffness phases. J. Mech. Phys. Solids 71 (2014) 46–63. | DOI | MR

[25] R.V. Kohn, J. Lu, B. Schweizer and M.I. Weinstein, A variational perspective on cloaking by anomalous localized resonance. Comm. Math. Phys. 328 (2014) 1–27. | DOI | MR | Zbl

[26] R.S. Lakes, T. Lee, A. Bersie and Y. Wang, Extreme damping in composite materials with negative-stiffness inclusions. Nature 410 (2001) 565–567. | DOI

[27] H. Li and H. Liu, On anomalous localized resonance for the elastostatic system. SIAM J. Math. Anal. 48 (2016) 3322–3344. | DOI | MR

[28] H. Li and H. Liu, On three-dimensional plasmon resonance in elastostatics. Annali di Matematica Pura ed Applicata 196 (2017) 1113–1135. | DOI | MR

[29] H. Li and H. Liu, On anomalous localized resonance and plasmonic cloaking beyond the quasistatic limit. Proc. R. Soc. A 474 20180165. | DOI

[30] H. Li, J. Li and H. Liu, On quasi-static cloaking due to anomalous localized resonance in 3 . SIAM J. Appl. Math. 75 (2015) 1245–1260. | DOI | MR

[31] H. Li, J. Li and H. Liu, On novel elastic structures inducing plariton resonances with finite frequencies and cloaking due to anomalous localized resonance. J. Math. Pures Appl. 120 (2018) 195–219. | DOI | MR

[32] H. Li, S. Li, H. Liu and X. Wang, Analysis of electromagnetic scattering from plasmonic inclusions beyond the quasi-static approximation and applications. ESAIM: M2AN 53 (2019) 1351–1371. | DOI | Numdam | MR

[33] R.C. Mcphedran, N.-A.P. Nicorovici, L.C. Botten and G.W. Milton, Cloaking by plasmonic resonance among systems of particles: Cooperation or combat? C. R. Phys. 10 (2009) 391–399. | DOI

[34] D.A.B. Miller, On perfect cloaking. Opt. Exp. 14 (2006) 12457–12466. | DOI

[35] G.W. Milton and N.-A.P. Nicorovici, On the cloaking effects associated with anomalous localized resonance. Proc. R. Soc. A 462 (2006) 3027–3059. | DOI | MR | Zbl

[36] G.W. Milton, N.-A.P. Nicorovici, R.C. Mcphedran, K. Cherednichenko and Z. Jacob, Solutions in folded geometries, and associated cloaking due to anomalous resonance. New J. Phys. 10 (2008) 115021. | DOI

[37] J.C. Nédélec, Acoustic and electromagnetic equations, In Vol. 144 of Applied Mathematical Sciences. Springer-Verlag, New York (2001). | MR | Zbl

[38] N.-A.P. Nicorovici, R.C. Mcphedran, S. Enoch and G. Tayeb, Finite wavelength cloaking by plasmonic resonance. New J. Phys. 10 (2008) 115020. | DOI

[39] N.-A.P. Nicorovici, R.C. Mcphedran and G.W. Milton, Optical and dielectric properties of partially resonant composites. Phys. Rev. B 49 (1994) 8479–8482. | DOI

[40] N.-A.P. Nicorovici, G.W. Milton, R.C. Mcphedran and L.C. Botten, Quasistatic cloaking of two-dimensional polarizable discrete systems by anomalous resonance. Opt. Exp. 15 (2007) 6314–6323. | DOI

[41] G.W. Milton and N.-A.P. Nicorovici, On the cloaking effects associated with anomalous localized resonance. Proc. R. Soc. A 462 (2006) 3027–3059. | DOI | MR | Zbl

[42] J.B. Pendry, Negative refraction makes a perfect lens. Phys. Rev. Lett. 85 (2000) 3966. | DOI

[43] D.R. Smith, J.B. Pendry and M.C.K. Wiltshire, Metamaterials and negative refractive index. Science 305 (2004) 788–792. | DOI

[44] V.G. Veselago, The electrodynamics of substances with simultaneously negative values of ϵ and μ . Sov. Phys. Usp. 10 (1968) 509–514. | DOI

Cité par Sources :