Convergence of second-order, entropy stable methods for multi-dimensional conservation laws
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 4, pp. 1415-1428.

High-order accurate, entropy stable numerical methods for hyperbolic conservation laws have attracted much interest over the last decade, but only a few rigorous convergence results are available, particularly in multiple space dimensions. In this paper we show how the entropy stability of one such method, which is semi-discrete in time, yields a (weak) bound on oscillations. Under the assumption of L-boundedness of the approximations we use compensated compactness to prove convergence to a weak solution satisfying at least one entropy condition.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1051/m2an/2019090
Classification : 35L65, 65M12, 65M08
Mots-clés : Multi-dimensional conservation laws, finite volume methods, TECNO scheme, entropy stability
@article{M2AN_2020__54_4_1415_0,
     author = {Chatterjee, Neelabja and Fjordholm, Ulrik Skre},
     title = {Convergence of second-order, entropy stable methods for multi-dimensional conservation laws},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1415--1428},
     publisher = {EDP-Sciences},
     volume = {54},
     number = {4},
     year = {2020},
     doi = {10.1051/m2an/2019090},
     mrnumber = {4113056},
     zbl = {1446.65088},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2019090/}
}
TY  - JOUR
AU  - Chatterjee, Neelabja
AU  - Fjordholm, Ulrik Skre
TI  - Convergence of second-order, entropy stable methods for multi-dimensional conservation laws
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2020
SP  - 1415
EP  - 1428
VL  - 54
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2019090/
DO  - 10.1051/m2an/2019090
LA  - en
ID  - M2AN_2020__54_4_1415_0
ER  - 
%0 Journal Article
%A Chatterjee, Neelabja
%A Fjordholm, Ulrik Skre
%T Convergence of second-order, entropy stable methods for multi-dimensional conservation laws
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2020
%P 1415-1428
%V 54
%N 4
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2019090/
%R 10.1051/m2an/2019090
%G en
%F M2AN_2020__54_4_1415_0
Chatterjee, Neelabja; Fjordholm, Ulrik Skre. Convergence of second-order, entropy stable methods for multi-dimensional conservation laws. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 4, pp. 1415-1428. doi : 10.1051/m2an/2019090. http://www.numdam.org/articles/10.1051/m2an/2019090/

G.Q. Chen and Y.G. Lu, The study on application way of the compensated compactness theory. Chin. Sci. Bull. 34 (1989) 15–19. | MR | Zbl

T. Chen and C.-W. Shu, Entropy stable high order discontinuous Galerkin methods with suitable quadrature rules for hyperbolic conservation laws. J. Comput. Phys. 345 (2017) 427–461. | DOI | MR | Zbl

C.M. Dafermos, Hyperbolic conservation laws in continuum physics, 4th edition. In: Vol. 325 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin (2016). | MR | Zbl

U.S. Fjordholm, High-order accurate entropy stable numerical schemes for hyperbolic conservation laws. , Ph.D. thesis, ETH Zurich, No. 21025.

U.S. Fjordholm, Stability properties of the ENO method. Handbook of Numerical Methods for Hyperbolic Problems: Basic and Fundamental Issues. In: Vol. 17 of Handbook of Numerical Analysis. Elsevier (2016) 123–145. | MR

U.S. Fjordholm and S.H. Zakerzadeh, High-order accurate, fully discrete entropy stable schemes for scalar conservation laws. IMA J. Numer. Anal. 36 (2016) 633–654. | DOI | MR | Zbl

U.S. Fjordholm, S. Mishra and E. Tadmor, Arbitrarily high-order accurate entropy stable essentially nonoscillatory schemes for systems of conservation laws. SIAM J. Numer. Anal. 50 (2012) 544–573. | DOI | MR | Zbl

U.S. Fjordholm, S. Mishra and E. Tadmor, ENO reconstruction and ENO interpolation are stable. Found. Comput. Math. 13 (2013) 139–159. | DOI | MR | Zbl

E. Godlewski and P.A. Raviart, Hyperbolic systems of conservation lawsIn: Vol. 3/4 of Mathématiques & Applications (Paris) [Mathematics and Applications]. Ellipses, Paris (1991). | MR | Zbl

A. Harten, J.M. Hyman and P.D. Lax, On finite-difference approximations and entropy conditions for shocks. With an appendix by B. Keyfitz. Comm. Pure Appl. Math. 29 (1976) 297–322. | DOI | MR | Zbl

A. Harten, S. Osher, B. Engquist and S.R. Chakravarthy, Some results on uniformly high-order accurate essentially nonoscillatory schemes. Appl. Numer. Math. 2 (1986) 347–377. | DOI | MR | Zbl

H. Holden and N.H. Risebro, Front Tracking for Hyperbolic Conservation Laws, 2nd ed. Springer-Verlag, Berlin Heidelberg (2015). | MR | Zbl

V. Jovanović and C. Rohde, Error estimates for finite volume approximations of classical solutions for nonlinear systems of hyperbolic balance laws. SIAM J. Numer. Anal. 43 (2006) 2423–2449. | DOI | MR | Zbl

S.N. Kruzkov, First order quasilinear equations in several independent variables. Math USSR SB 10 (1970) 217–243. | DOI | MR | Zbl

P.G. Lefloch, J.M. Mercier and C. Rohde, Fully discrete, entropy conservative schemes of arbitrary order. SIAM J. Numer. Anal. 40 (2002) 1968–1992. | DOI | MR | Zbl

R.J. Leveque, Finite volume methods for hyperbolic problems, Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2002). | MR | Zbl

S. Osher, Riemann solvers, the entropy condition, and difference approximations. SIAM J. Numer. Anal. 21 (1984) 217–235. | DOI | MR | Zbl

E.Y. Panov, Existence and strong pre-compactness properties for entropy solutions of a first-order quasilinear equation with discontinuous flux. Arch. Ration. Mech. Anal. 195 (2010) 643–673. | DOI | MR | Zbl

E. Tadmor, Numerical viscosity and the entropy condition for conservative difference schemes. Math. Comput. 43 (1984) 369–381. | DOI | MR | Zbl

E. Tadmor, The numerical viscosity of entropy stable schemes for systems of conservation laws I. Math. Comput. 49 (1987) 91–103. | DOI | MR | Zbl

E. Tadmor, Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems. Acta Numer. 12 (2003) 451–512. | DOI | MR | Zbl

L. Tartar, Compensated compactness and applications to partial differential equations. In: Vol. 39 of Nonlinear Analysis and Mechanics: Heriot–Watt Symposium. Vol. IV, Notes in Math, Pitman, Boston, MA, London (1979) 136–212. | MR | Zbl

Cité par Sources :