In this paper, we study the time-harmonic scalar equation describing the propagation of acoustic waves in the Sun’s atmosphere under ideal atmospheric assumptions. We use the Liouville change of unknown to conjugate the original problem to a Schrödinger equation with a Coulomb-type potential. This transformation makes appear a new wavenumber, k, and the link with the Whittaker’s equation. We consider two different problems: in the first one, with the ideal atmospheric assumptions extended to the whole space, we construct explicitly the Schwartz kernel of the resolvent, starting from a solution given by Hostler and Pratt in punctured domains, and use this to construct outgoing solutions and radiation conditions. In the second problem, we construct exact Dirichlet-to-Neumann map using Whittaker functions, and new radiation boundary conditions (RBC), using gauge functions in terms of k. The new approach gives rise to simpler RBC for the same precision compared to existing ones. The robustness of our new RBC is corroborated by numerical experiments.
Accepté le :
Publié le :
DOI : 10.1051/m2an/2019088
Mots-clés : Helioseismology, Whittaker functions, Coulomb potential, outgoing fundamental solution, exact Dirichlet-to-Neumann map, Schrödinger equation, Liouville transform, radiation conditions
@article{M2AN_2020__54_4_1111_0, author = {Barucq, H\'el\`ene and Faucher, Florian and Pham, Ha}, title = {Outgoing solutions and radiation boundary conditions for the ideal atmospheric scalar wave equation in helioseismology}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1111--1138}, publisher = {EDP-Sciences}, volume = {54}, number = {4}, year = {2020}, doi = {10.1051/m2an/2019088}, mrnumber = {4099212}, zbl = {1440.85003}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2019088/} }
TY - JOUR AU - Barucq, Hélène AU - Faucher, Florian AU - Pham, Ha TI - Outgoing solutions and radiation boundary conditions for the ideal atmospheric scalar wave equation in helioseismology JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2020 SP - 1111 EP - 1138 VL - 54 IS - 4 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2019088/ DO - 10.1051/m2an/2019088 LA - en ID - M2AN_2020__54_4_1111_0 ER -
%0 Journal Article %A Barucq, Hélène %A Faucher, Florian %A Pham, Ha %T Outgoing solutions and radiation boundary conditions for the ideal atmospheric scalar wave equation in helioseismology %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2020 %P 1111-1138 %V 54 %N 4 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2019088/ %R 10.1051/m2an/2019088 %G en %F M2AN_2020__54_4_1111_0
Barucq, Hélène; Faucher, Florian; Pham, Ha. Outgoing solutions and radiation boundary conditions for the ideal atmospheric scalar wave equation in helioseismology. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 4, pp. 1111-1138. doi : 10.1051/m2an/2019088. http://www.numdam.org/articles/10.1051/m2an/2019088/
[1] Monochromatic identities for the Green function and uniqueness results for passive imaging. SIAM J. Appl. Math. 78 (2018) 2865–2890. | DOI | MR | Zbl
, and ,[2] Global uniqueness in a passive inverse problem of helioseismology. Preprint arXiv:1907.05939 (2019). | MR
, and ,[3] Exact results for thermodynamics of the hydrogen plasma: low-temperature expansions beyond Saha theory. J. Stat. Phys. 130 (2008) 1119–1176. | DOI | MR | Zbl
, , and ,[4] Calderón’s inverse problem with a finite number of measurements. Forum Math. Sigma 7 (2019) e35. | DOI | MR | Zbl
and ,[5] Bayliss–Turkel-like radiation conditions on surfaces of arbitrary shape. J. Math. Anal. App. 229 (1999) 184–211. | DOI | MR | Zbl
, and ,[6] Atmospheric radiation boundary conditions for the Helmholtz equation. ESAIM: M2AN 52 (2018) 945–964. | DOI | Numdam | MR | Zbl
, , , and ,[7] Outgoing solutions to the scalar wave equation in helioseismology. Research Report RR-9280, Inria Bordeaux Sud-Ouest; Project-Team Magique3D (2019).
, and ,[8] Boundary conditions for the numerical solution of elliptic equations in exterior regions. SIAM J. Appl. Math. 42 (1982) 430–451. | DOI | MR | Zbl
, and ,[9] The Confluent Hypergeometric Function: With Special Emphasis on its Applications. In Vol. 15. Springer Science & Business Media (2013). | MR | Zbl
,[10] The current state of solar modeling. Science 272 (1996) 1286–1292. | DOI
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , and ,[11] Inverse Acoustic and Electromagnetic Scattering Theory. In Vol. 93. Springer Science & Business Media (2012). | MR | Zbl
and ,[12] On radial Schrödinger operators with a Coulomb potential. Ann. Henri Poincaré 19 (2018) 2869–2917. | DOI | MR | Zbl
and ,[13] Atmospheric-radiation boundary conditions for high-frequency waves in time-distance helioseismology. Astron. Astrophys. 608 (2017) A109. | DOI
, , , , , and ,[14] Local helioseismology: three-dimensional imaging of the solar interior. Ann. Rev. Astron. Astrophys. 48 (2010) 289–338. | DOI
, and ,[15] Computational helioseismology in the frequency domain: acoustic waves in axisymmetric solar models with flows. Astron. Astrophys. 600 (2017) A35. | DOI
, , , , , , , , and ,[16] Perturbations of the Laplacian by Coulomb like potentials. In: Scattering Theory in Mathematical Physics. Springer (1974) 237–242. | DOI | Zbl
and ,[17] Coulomb Green’s function in closed form. Phys. Rev. Lett. 10 (1963) 469. | DOI | MR | Zbl
and ,[18] Coulomb wave functions. In: Nuclear Reactions II: Theory/Kernreaktionen II: Theorie. Springer (1959) 408–465. | MR
and ,[19] Finite Element Analysis of Acoustic Scattering. Springer Science & Business Media 132 (1998). | DOI | MR | Zbl
,[20] Arb: efficient arbitrary-precision midpoint-radius interval arithmetic. IEEE Trans. Comput. 66 (2017) 1281–1292. | DOI | MR | Zbl
,[21] Computing hypergeometric functions rigorously. ACM Trans. Math. Softw. 45 (2019) 1–26. | DOI | MR | Zbl
,[22] Harmonic and Complex Analysis in Several Variables. Springer (2017). | DOI | MR
,[23] Initial Boundary Value Problems in Mathematical Physics. Courier Corporation (1986). | DOI | MR | Zbl
,[24] An initial boundary-value problem for the Schrödinger equation with long-range potential. Proc. R. Soc. Lond. A 417 (1988) 353–362. | DOI | MR | Zbl
and ,[25] Formulas and theorems for the special functions of mathematical physics. Springer Science & Business Media 52 (2013). | Zbl
, and ,[26] Exponential instability in an inverse problem for the Schrödinger equation. Inverse Prob. 17 (2001) 1435. | DOI | MR | Zbl
,[27] Acoustic scattering by inhomogeneous spheres. J. Acoust. Soc. Am. 111 (2002) 2013–2018. | DOI
,[28] Global uniqueness for a two-dimensional inverse boundary value problem. Ann. Math. 143 (1996) 71–96. | DOI | MR | Zbl
,[29] On the asymptotic solution of second-order differential equations having an irregular singularity of rank one, with an application to Whittaker functions. J. Soc. Ind. Appl. Math. Ser. B: Numer. Anal. 2 (1965) 225–243. | DOI | MR | Zbl
,[30] NIST Handbook of Mathematical Functions Hardback and CD-ROM. Cambridge University Press (2010). | MR | Zbl
, , and ,[31] Harmonic analysis and inverse problems. Lectures Notes (2002).
,[32] Scattering, Inverse Scattering and Resonances in ℝ$$ (2019).
,[33] Mathematical methods in quantum mechanics. In Vol. 99 of Graduate Studies in Mathematics. American Mathematical Society (2009). | DOI | MR | Zbl
,[34] Mathematical Scattering Theory: Analytic Theory. American Mathematical Society (2010). | DOI | MR
,[35] Limiting absorption principle for the electromagnetic Helmholtz equation with singular potentials. Proc. R. Soc. Edinburgh Sect. A: Math. 144 (2014) 857–890. | DOI | MR | Zbl
,Cité par Sources :