Outgoing solutions and radiation boundary conditions for the ideal atmospheric scalar wave equation in helioseismology
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 4, pp. 1111-1138.

In this paper, we study the time-harmonic scalar equation describing the propagation of acoustic waves in the Sun’s atmosphere under ideal atmospheric assumptions. We use the Liouville change of unknown to conjugate the original problem to a Schrödinger equation with a Coulomb-type potential. This transformation makes appear a new wavenumber, k, and the link with the Whittaker’s equation. We consider two different problems: in the first one, with the ideal atmospheric assumptions extended to the whole space, we construct explicitly the Schwartz kernel of the resolvent, starting from a solution given by Hostler and Pratt in punctured domains, and use this to construct outgoing solutions and radiation conditions. In the second problem, we construct exact Dirichlet-to-Neumann map using Whittaker functions, and new radiation boundary conditions (RBC), using gauge functions in terms of k. The new approach gives rise to simpler RBC for the same precision compared to existing ones. The robustness of our new RBC is corroborated by numerical experiments.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1051/m2an/2019088
Classification : 00A71, 33C15, 35J10, 35L05, 35A08, 35B40, 33C55, 85A20
Mots-clés : Helioseismology, Whittaker functions, Coulomb potential, outgoing fundamental solution, exact Dirichlet-to-Neumann map, Schrödinger equation, Liouville transform, radiation conditions
@article{M2AN_2020__54_4_1111_0,
     author = {Barucq, H\'el\`ene and Faucher, Florian and Pham, Ha},
     title = {Outgoing solutions and radiation boundary conditions for the ideal atmospheric scalar wave equation in helioseismology},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1111--1138},
     publisher = {EDP-Sciences},
     volume = {54},
     number = {4},
     year = {2020},
     doi = {10.1051/m2an/2019088},
     mrnumber = {4099212},
     zbl = {1440.85003},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2019088/}
}
TY  - JOUR
AU  - Barucq, Hélène
AU  - Faucher, Florian
AU  - Pham, Ha
TI  - Outgoing solutions and radiation boundary conditions for the ideal atmospheric scalar wave equation in helioseismology
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2020
SP  - 1111
EP  - 1138
VL  - 54
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2019088/
DO  - 10.1051/m2an/2019088
LA  - en
ID  - M2AN_2020__54_4_1111_0
ER  - 
%0 Journal Article
%A Barucq, Hélène
%A Faucher, Florian
%A Pham, Ha
%T Outgoing solutions and radiation boundary conditions for the ideal atmospheric scalar wave equation in helioseismology
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2020
%P 1111-1138
%V 54
%N 4
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2019088/
%R 10.1051/m2an/2019088
%G en
%F M2AN_2020__54_4_1111_0
Barucq, Hélène; Faucher, Florian; Pham, Ha. Outgoing solutions and radiation boundary conditions for the ideal atmospheric scalar wave equation in helioseismology. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 4, pp. 1111-1138. doi : 10.1051/m2an/2019088. http://www.numdam.org/articles/10.1051/m2an/2019088/

[1] A.D. Agaltsov, T. Hohage and R.G. Novikov, Monochromatic identities for the Green function and uniqueness results for passive imaging. SIAM J. Appl. Math. 78 (2018) 2865–2890. | DOI | MR | Zbl

[2] A.D. Agaltsov, T. Hohage and R.G. Novikov, Global uniqueness in a passive inverse problem of helioseismology. Preprint arXiv:1907.05939 (2019). | MR

[3] A. Alastuey, V. Ballenegger, F. Cornu and P.A. Martin, Exact results for thermodynamics of the hydrogen plasma: low-temperature expansions beyond Saha theory. J. Stat. Phys. 130 (2008) 1119–1176. | DOI | MR | Zbl

[4] G.S. Alberti and M. Santacesaria, Calderón’s inverse problem with a finite number of measurements. Forum Math. Sigma 7 (2019) e35. | DOI | MR | Zbl

[5] X. Antoine, H. Barucq and A. Bendali, Bayliss–Turkel-like radiation conditions on surfaces of arbitrary shape. J. Math. Anal. App. 229 (1999) 184–211. | DOI | MR | Zbl

[6] H. Barucq, J. Chabassier, M. Duruflé, L. Gizon and M. Leguèbe, Atmospheric radiation boundary conditions for the Helmholtz equation. ESAIM: M2AN 52 (2018) 945–964. | DOI | Numdam | MR | Zbl

[7] H. Barucq, F. Faucher and H. Pham, Outgoing solutions to the scalar wave equation in helioseismology. Research Report RR-9280, Inria Bordeaux Sud-Ouest; Project-Team Magique3D (2019).

[8] A. Bayliss, M. Gunzburger and E. Turkel, Boundary conditions for the numerical solution of elliptic equations in exterior regions. SIAM J. Appl. Math. 42 (1982) 430–451. | DOI | MR | Zbl

[9] H. Buchholz, The Confluent Hypergeometric Function: With Special Emphasis on its Applications. In Vol. 15. Springer Science & Business Media (2013). | MR | Zbl

[10] J. Christensen-Dalsgaard, W. Däppen, S. Ajukov, E. Anderson, H. Antia, S. Basu, V. Baturin, G. Berthomieu, B. Chaboyer, S. Chitre, A.N. Cox, P. Demarque, J. Donatowicz, W.A. Dziembowski, M. Gabriel, D.O. Gough, D.B. Guenther, J.A. Guzik, J.W. Harvey, F. Hill, G. Houdek, C.A. Iglesias, A.G. Kosovichev, J.W. Leibacher, P. Morel, C.R. Proffitt, J. Provost, J. Reiter, E.J. Rhodes Jr, F.J. Rogers, I.W. Roxburgh, M.J. Thompson and R.K. Ulrich, The current state of solar modeling. Science 272 (1996) 1286–1292. | DOI

[11] D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory. In Vol. 93. Springer Science & Business Media (2012). | MR | Zbl

[12] J. Dereziński and S. Richard, On radial Schrödinger operators with a Coulomb potential. Ann. Henri Poincaré 19 (2018) 2869–2917. | DOI | MR | Zbl

[13] D. Fournier, M. Leguèbe, C.S. Hanson, L. Gizon, H. Barucq, J. Chabassier and M. Duruflé, Atmospheric-radiation boundary conditions for high-frequency waves in time-distance helioseismology. Astron. Astrophys. 608 (2017) A109. | DOI

[14] L. Gizon, A.C. Birch and H.C. Spruit, Local helioseismology: three-dimensional imaging of the solar interior. Ann. Rev. Astron. Astrophys. 48 (2010) 289–338. | DOI

[15] L. Gizon, H. Barucq, M. Duruflé, C.S. Hanson, M. Leguèbe, A.C. Birch, J. Chabassier, D. Fournier, T. Hohage and E. Papini, Computational helioseismology in the frequency domain: acoustic waves in axisymmetric solar models with flows. Astron. Astrophys. 600 (2017) A35. | DOI

[16] J. Guillot and K. Zizi, Perturbations of the Laplacian by Coulomb like potentials. In: Scattering Theory in Mathematical Physics. Springer (1974) 237–242. | DOI | Zbl

[17] L. Hostler and R. Pratt, Coulomb Green’s function in closed form. Phys. Rev. Lett. 10 (1963) 469. | DOI | MR | Zbl

[18] M. Hull and G. Breit, Coulomb wave functions. In: Nuclear Reactions II: Theory/Kernreaktionen II: Theorie. Springer (1959) 408–465. | MR

[19] F. Ihlenburg, Finite Element Analysis of Acoustic Scattering. Springer Science & Business Media 132 (1998). | DOI | MR | Zbl

[20] F. Johansson, Arb: efficient arbitrary-precision midpoint-radius interval arithmetic. IEEE Trans. Comput. 66 (2017) 1281–1292. | DOI | MR | Zbl

[21] F. Johansson, Computing hypergeometric functions rigorously. ACM Trans. Math. Softw. 45 (2019) 1–26. | DOI | MR | Zbl

[22] S.G. Krantz, Harmonic and Complex Analysis in Several Variables. Springer (2017). | DOI | MR

[23] R. Leis, Initial Boundary Value Problems in Mathematical Physics. Courier Corporation (1986). | DOI | MR | Zbl

[24] R. Leis and G.F. Roach, An initial boundary-value problem for the Schrödinger equation with long-range potential. Proc. R. Soc. Lond. A 417 (1988) 353–362. | DOI | MR | Zbl

[25] W. Magnus, F. Oberhettinger and R.P. Soni, Formulas and theorems for the special functions of mathematical physics. Springer Science & Business Media 52 (2013). | Zbl

[26] N. Mandache, Exponential instability in an inverse problem for the Schrödinger equation. Inverse Prob. 17 (2001) 1435. | DOI | MR | Zbl

[27] P. Martin, Acoustic scattering by inhomogeneous spheres. J. Acoust. Soc. Am. 111 (2002) 2013–2018. | DOI

[28] A.I. Nachman, Global uniqueness for a two-dimensional inverse boundary value problem. Ann. Math. 143 (1996) 71–96. | DOI | MR | Zbl

[29] F. Olver, On the asymptotic solution of second-order differential equations having an irregular singularity of rank one, with an application to Whittaker functions. J. Soc. Ind. Appl. Math. Ser. B: Numer. Anal. 2 (1965) 225–243. | DOI | MR | Zbl

[30] F.W. Olver, D.W. Lozier, R.F. Boisvert and C.W. Clark, NIST Handbook of Mathematical Functions Hardback and CD-ROM. Cambridge University Press (2010). | MR | Zbl

[31] A. Ruiz, Harmonic analysis and inverse problems. Lectures Notes (2002).

[32] P. Stefanov, Scattering, Inverse Scattering and Resonances in ℝ$$ (2019).

[33] G. Teschl, Mathematical methods in quantum mechanics. In Vol. 99 of Graduate Studies in Mathematics. American Mathematical Society (2009). | DOI | MR | Zbl

[34] D. Yafaev, Mathematical Scattering Theory: Analytic Theory. American Mathematical Society (2010). | DOI | MR

[35] M. Zubeldia, Limiting absorption principle for the electromagnetic Helmholtz equation with singular potentials. Proc. R. Soc. Edinburgh Sect. A: Math. 144 (2014) 857–890. | DOI | MR | Zbl

Cité par Sources :