Computation of the magnetic potential induced by a collection of spherical particles using series expansions
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 4, pp. 1073-1109.

In Magnetic Resonance Imaging there are several situations where, for simulation purposes, one wants to compute the magnetic field induced by a cluster of small metallic particles. Given the difficulty of the problem from a numerical point of view, the simplifying assumption that the field due to each particle interacts only with the main magnetic field but does not interact with the fields due to the other particles is usually made. In this paper we investigate from a mathematical point of view the relevancy of this assumption and provide error estimates for the scalar magnetic potential in terms of the key parameter that is the minimal distance between the particles. A special attention is paid to obtain explicit and relevant constants in the estimates. When the “non-interacting assumption” is deficient, we propose to compute a better approximation of the magnetic potential by taking into account pairwise magnetic field interactions between particles that enters in a general framework for computing the scalar magnetic potential as a series expansion.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1051/m2an/2019087
Classification : 65N15, 41-04, 78A30, 92C55
Mots-clés : Series expansion, error estimates, Spherical Surface Harmonics, Green’s representation formula, magnetic potential, Magnetic Resonance Imaging
@article{M2AN_2020__54_4_1073_0,
     author = {Balac, St\'ephane and Chupin, Laurent and Martin, S\'ebastien},
     title = {Computation of the magnetic potential induced by a collection of spherical particles using series expansions},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1073--1109},
     publisher = {EDP-Sciences},
     volume = {54},
     number = {4},
     year = {2020},
     doi = {10.1051/m2an/2019087},
     mrnumber = {4099211},
     zbl = {1446.65196},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2019087/}
}
TY  - JOUR
AU  - Balac, Stéphane
AU  - Chupin, Laurent
AU  - Martin, Sébastien
TI  - Computation of the magnetic potential induced by a collection of spherical particles using series expansions
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2020
SP  - 1073
EP  - 1109
VL  - 54
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2019087/
DO  - 10.1051/m2an/2019087
LA  - en
ID  - M2AN_2020__54_4_1073_0
ER  - 
%0 Journal Article
%A Balac, Stéphane
%A Chupin, Laurent
%A Martin, Sébastien
%T Computation of the magnetic potential induced by a collection of spherical particles using series expansions
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2020
%P 1073-1109
%V 54
%N 4
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2019087/
%R 10.1051/m2an/2019087
%G en
%F M2AN_2020__54_4_1073_0
Balac, Stéphane; Chupin, Laurent; Martin, Sébastien. Computation of the magnetic potential induced by a collection of spherical particles using series expansions. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 4, pp. 1073-1109. doi : 10.1051/m2an/2019087. http://www.numdam.org/articles/10.1051/m2an/2019087/

[1] M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables. Dover Books on Mathematics. Dover Publications (1965). | MR | Zbl

[2] S. Balac and G. Caloz, Mathematical modeling and numerical simulation of magnetic susceptibility artifacts in Magnetic Resonance Imaging. Comput. Methods Biomech. Biomed. Eng. 3 (2000) 335–349. | DOI

[3] J.L. Boxerman, L.M. Hamberg, B.R. Rosen and R.M. Weisskoff, MR contrast due to intravascular magnetic susceptibility perturbations. Magn. Reson. Med. 34 (1995) 555–566. | DOI

[4] H. Cheng, On the method of images for systems of closely spaced conducting spheres. SIAM J. Appl. Math. 61 (2001) 1324–1337. | DOI | MR | Zbl

[5] J.-Y. Chung, Y.-W. Sung and S. Ogawa, Evaluation of the contribution of signals originating from large blood vessels to signals of functionally specific brain areas. BioMed Res. Int. 2015 (2015) 234345.

[6] R. Dautray and J.L. Lions, Analyse mathématique et calcul numérique pour les sciences et les techniques. Vol. 4 of Collection Enseignement – INSTN CEA (1988). | MR

[7] J. Deny and J.L. Lions, Les espaces du type de Beppo Levi. Ann. Inst. Fourier 5 (1954) 305–370. | DOI | Numdam | Zbl

[8]  O. Druet, Inégalités de Sobolev optimales et inégalités isopérimétriques sur les variétés. Séminaire de théorie spectrale et géométri 20 (2001–2002) 23–100. | DOI | Numdam | MR | Zbl

[9] S. Fujiwara, L. Uhrig, A. Amadon, B. Jarraya and D. Le Bihan, Quantification of iron in the non-human primate brain with diffusion-weighted magnetic resonance imaging. NeuroImage 102 (2014) 789–797. | DOI

[10] Z. Gan, S. Jiang, E. Luijten and Z. Xu, A hybrid method for systems of closely spaced dielectric spheres and ions. SIAM J. Sci. Comput. 38 (2016) B375–B395. | DOI | MR | Zbl

[11] F. Hecht, New development in FreeFem++. J. Numer. Math. 20 (2012) 251–265. | DOI | MR | Zbl

[12] J. Jin, The Finite Element Method in Electromagnetics. 3rd edition. Wiley-IEEE Press (2014). | Zbl

[13] S.-G. Kim, N. Harel, T. Jin, T. Kim, P. Lee and F. Zhao, Cerebral blood volume MRI with intravascular superparamagentic iron oxide nanoparticles. NMR in Biomed. 26 (2013) 949–962. | DOI

[14] V.G. Kiselev, Effect of magnetic field gradients induced by microvasculature on NMR measurements of molecular self-diffusion in biological tissues. J. Magn. Reson. 170 (2004) 228–235. | DOI

[15] V. Kiselev and S. Posse, Analytical model of susceptibility-induced MR signal dephasing: Effect of diffusion in a microvascular network. Magn. Reson. Med. 41 (1999) 499–509. | DOI

[16] S. Kunis and D. Potts, Fast spherical Fourier algorithms. J. Comput. Appl. Math. 161 (2003) 75–98. | DOI | MR | Zbl

[17] K.S. Kunz and R.J. Luebbers, The Finite Difference Time Domain Method for Electromagnetics. CRC Press (1993).

[18] E.B. Lindgren, A.J. Stace, E. Polack, Y. Maday, B. Stamm and E. Besley, An integral equation approach to calculate electrostatic interactions in many-body dielectric systems. J. Comput. Phys. 371 (2018) 712–731. | DOI | MR | Zbl

[19] G. Lohöfer, Inequalities for the associated Legendre functions. J. Approximation Theory 95 (1998) 178–193. | DOI | MR | Zbl

[20] F.W.J. Olver, D.W. Lozier, R.F. Boisvert and C.W. Clark, NIST Handbook of Mathematical Functions. Cambridge University Press (2010). | Zbl

[21] A.P. Pathak, B.D. Ward and K.M. Schmainda, A novel technique for modeling susceptibility-based contrast mechanisms for arbitrary microvascular geometries: The finite perturber method. NeuroImage 40 (2008) 1130–1143. | DOI

[22] J. Qin, J.J. De Pablo and K.F. Freed, Image method for induced surface charge from many-body system of dielectric spheres. J. Chem. Phys. 145 (2016) 124903. | DOI

[23] W.J. Rogers, C.H. Meyer and C.M. Kramer, Technology insight: in vivo cell tracking by use of MRI. Nat. Clin. Pract. Cardiovasc. Med. 3 (2006) 554–562. | DOI

[24] V. Rokhlin and M. Tygert, Fast algorithms for spherical harmonic expansions. SIAM J. Sci. Comput. 27 (2006) 1903–1928. | DOI | MR | Zbl

[25] G. Sansone, Orthogonal functions. Dover Books on Mathematics Series. Dover Publications (2004). | MR

[26] N. Schaeffer, Efficient spherical harmonic transforms aimed at pseudospectral numerical simulations. Geochem. Geophys. Geosyst. 14 (2013) 751–758. | DOI

[27] J.F. Schenck, The role of magnetic susceptibility in Magnetic Resonance Imaging: MRI magnetic compatibility of the first and second kinds. Med. Phys. 23 (1996) 815–850. | DOI

[28] J.L. Volakis and S. Sertel, Integral equation methods for electromagnetics. In: Electromagnetic Waves. Institution of Engineering and Technology (2012).

[29] C. Weis, F. Blank, A. West, G. Black, R.C. Woodward, M.R. Carroll, A. Mainka, R. Kartmann, A. Brandl, H. Bruns and E. Hallam, Labeling of cancer cells with magnetic nanoparticles for MRI. Magn. Reson. Med. 71 (2014) 1896–1905. | DOI

[30] D.A. Yablonskiy and E.M. Haacke, Theory of NMR signal behavior in magnetically inhomogeneous tissues: The static dephasing regime. Magn. Reson. Med. 32 (1994) 749–763. | DOI

[31] L. Zecca, M.B.H. Youdim, P. Riederer, J.R. Connor and R.R. Crichton, Iron, brain ageing and neurodegenerative disorders. Nat. Rev. Neurosci. 5 (2004) 863–873. | DOI

[32] J. Zhong, R.P. Kennan and J.C. Gore, Effects of susceptibility variations on NMR measurements of diffusion. J. Magn. Reson. 951991 (1969) 267–280.

Cité par Sources :