A remark on Uzawa’s algorithm and an application to mean field games systems
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 3, pp. 1053-1071.

In this paper, we present an extension of Uzawa’s algorithm and apply it to build approximating sequences of mean field games systems. We prove that Uzawa’s iterations can be used in a more general situation than the one in it is usually used. We then present some numerical results of those iterations on discrete mean field games systems of optimal stopping, impulse control and continuous control.

DOI : 10.1051/m2an/2019084
Classification : 91A13, 49K99, 65M06
Mots-clés : Uzawa’s algorithm, mean field games, variational inequalities
@article{M2AN_2020__54_3_1053_0,
     author = {Bertucci, Charles},
     title = {A remark on {Uzawa{\textquoteright}s} algorithm and an application to mean field games systems},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1053--1071},
     publisher = {EDP-Sciences},
     volume = {54},
     number = {3},
     year = {2020},
     doi = {10.1051/m2an/2019084},
     mrnumber = {4094733},
     zbl = {1437.91051},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2019084/}
}
TY  - JOUR
AU  - Bertucci, Charles
TI  - A remark on Uzawa’s algorithm and an application to mean field games systems
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2020
SP  - 1053
EP  - 1071
VL  - 54
IS  - 3
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2019084/
DO  - 10.1051/m2an/2019084
LA  - en
ID  - M2AN_2020__54_3_1053_0
ER  - 
%0 Journal Article
%A Bertucci, Charles
%T A remark on Uzawa’s algorithm and an application to mean field games systems
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2020
%P 1053-1071
%V 54
%N 3
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2019084/
%R 10.1051/m2an/2019084
%G en
%F M2AN_2020__54_3_1053_0
Bertucci, Charles. A remark on Uzawa’s algorithm and an application to mean field games systems. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 3, pp. 1053-1071. doi : 10.1051/m2an/2019084. http://www.numdam.org/articles/10.1051/m2an/2019084/

Y. Achdou and I. Capuzzo-Dolcetta, Mean field games: numerical methods. SIAM J. Numer. Anal. 48 (2010) 1136–1162. | DOI | MR | Zbl

N. Almulla, R. Ferreira and D. Gomes, Two numerical approaches to stationary mean-field games. Dyn. Games Appl. 7 (2017) 657–682. | DOI | MR | Zbl

R. Andreev, Preconditioning the augmented lagrangian method for instationary mean field games with diffusion. SIAM J. Sci. Comput. 39 (2017) A2763–A2783. | DOI | MR | Zbl

K.J. Arrow, L. Hurwicz and H. Uzawa, Studies in Linear and Non-linear Programming, Stanford University Press, Stanford, CA (1958). | MR | Zbl

J.-D. Benamou and Y. Brenier, A computational fluid mechanics solution to the monge-kantorovich mass transfer problem. Numer. Math. 84 (2000) 375–393. | DOI | MR | Zbl

J.-D. Benamou and G. Carlier, Augmented lagrangian methods for transport optimization, mean field games and degenerate elliptic equations. J. Optim. Theory Appl. 167 (2015) 1–26. | DOI | MR | Zbl

M. Benzi, G.H. Golub and J. Liesen, Numerical solution of saddle point problems. Acta Numer. 14 (2005) 1–137. | DOI | MR | Zbl

C. Bertucci, Optimal stopping in mean field games, an obstacle problem approach. J. Math. Pures Appl. 120 (2018) 165–194. | DOI | MR | Zbl

C. Bertucci, Fokker–Planck equations of jumping particles and mean field games of impulse control. Preprint arXiv:1803.06126 (2018). | MR

J.H. Bramble, J.E. Pasciak and A.T. Vassilev, Analysis of the inexact Uzawa algorithm for saddle point problems. SIAM J. Numer. Anal. 34 (1997) 1072–1092. | DOI | MR | Zbl

L.M. Briceno-Arias, D. Kalise and F.J. Silva, Proximal methods for stationary mean field games with local couplings. SIAM J. Control Optim. 56 (2018) 801–836. | DOI | MR | Zbl

L. Briceño-Arias, D. Kalise, Z. Kobeissi, M. Laurière, Á. González and F.J. Silva, On the implementation of a primal-dual algorithm for second order time-dependent mean field games with local couplings. ESAIM: PROCS. 65 (2019) 330–348. | DOI | MR | Zbl

P. Cardaliaguet, Weak solutions for first order mean field games with local coupling. In: Analysis and Geometry in Control Theory and its Applications. Springer (2015) 111–158. | MR | Zbl

P. Cardaliaguet, F. Delarue, J.-M. Lasry and P.-L. Lions, The Master Equation and the Convergence Problem in Mean Field Games:(AMS-201). In: Vol. 381of Annals of Mathematics Studies. Princeton University Press (2019). | MR | Zbl

R. Carmona and F. Delarue, Probabilistic Theory of Mean Field Games with Applications I-II. Springer (2017). | MR

J.A. Carrillo, K. Craig, L. Wang, C. Wei, Primal dual methods for wasserstein gradient flows. Preprint arXiv:1901.08081 (2019). | MR

H.C. Elman and G.H. Golub, Inexact and preconditioned Uzawa algorithms for saddle point problems. SIAM J. Numer. Anal. 31 (1994) 1645–1661. | DOI | MR | Zbl

R. Ferreira and D. Gomes, Existence of weak solutions to stationary mean-field games through variational inequalities. SIAM J. Math. Anal. 50 (2018) 5969–6006. | DOI | MR | Zbl

M. Fortin and A. Fortin, A generalization of Uzawa’s algorithm for the solution of the navier-stokes equations. Commun. Appl. Numer. Methods 1 (1985) 205–208. | DOI | Zbl

M. Huang, R.P. Malhamé and P.E. Caines, Large population stochastic dynamic games: closed-loop Mckean–Vlasov systems and the nash certainty equivalence principle. Commun. Inf. Sys. 6 (2006) 221–252. | DOI | MR | Zbl

R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker–Planck equation. SIAM J. Math. Anal. 29 (1998) 1–17. | DOI | MR | Zbl

G.M. Kobelkov and M.A. Olshanskii, Effective preconditioning of Uzawa type schemes for a generalized Stokes problem. Numer. Math. 86 (2000) 443–470. | DOI | MR | Zbl

J.-M. Lasry and P.-L. Lions, Mean field games. Jpn. J. Math. 2 (2007) 229–260. | DOI | MR | Zbl

P.-L. Lions, Cours au college de france. Available from: www.college-de-france.fr (2020).

J.-L. Lions and G. Stampacchia, Variational inequalities. Commun. Pure Appl. Math. 20 (1967) 493–519. | DOI | MR | Zbl

Cité par Sources :