Research Article
Exponential convergence of Cartesian PML method for Maxwell’s equations in a two-layer medium
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 3, pp. 929-956.

The perfectly matched layer (PML) method is extensively studied for scattering problems in homogeneous background media. However, rigorous studies on the PML method in layered media are very rare in the literature, particularly, for three-dimensional electromagnetic scattering problems. Cartesian PML method is favorable in numerical solutions since it is apt to deal with anisotropic scatterers and to construct finite element meshes. Its theories are more difficult than circular PML method due to anisotropic wave-absorbing materials. This paper presents a systematic study on the Cartesian PML method for three-dimensional electromagnetic scattering problem in a two-layer medium. We prove the well-posedness of the PML truncated problem and that the PML solution converges exponentially to the exact solution as either the material parameter or the thickness of PML increases. To the best of the authors’ knowledge, this is the first theoretical work on Cartesian PML method for Maxwell’s equations in layered media.

DOI : 10.1051/m2an/2019082
Classification : 35Q60, 65N30
Mots-clés : Cartesian perfectly matched layer, exponential convergence, electromagnetic scattering problem, Maxwell’s equation, two-layer medium
@article{M2AN_2020__54_3_929_0,
     author = {Duan, Xiaoqi and Jiang, Xue and Zheng, Weiying},
     title = {Exponential convergence of {Cartesian} {PML} method for {Maxwell{\textquoteright}s} equations in a two-layer medium},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {929--956},
     publisher = {EDP-Sciences},
     volume = {54},
     number = {3},
     year = {2020},
     doi = {10.1051/m2an/2019082},
     mrnumber = {4082472},
     zbl = {1437.35648},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2019082/}
}
TY  - JOUR
AU  - Duan, Xiaoqi
AU  - Jiang, Xue
AU  - Zheng, Weiying
TI  - Exponential convergence of Cartesian PML method for Maxwell’s equations in a two-layer medium
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2020
SP  - 929
EP  - 956
VL  - 54
IS  - 3
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2019082/
DO  - 10.1051/m2an/2019082
LA  - en
ID  - M2AN_2020__54_3_929_0
ER  - 
%0 Journal Article
%A Duan, Xiaoqi
%A Jiang, Xue
%A Zheng, Weiying
%T Exponential convergence of Cartesian PML method for Maxwell’s equations in a two-layer medium
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2020
%P 929-956
%V 54
%N 3
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2019082/
%R 10.1051/m2an/2019082
%G en
%F M2AN_2020__54_3_929_0
Duan, Xiaoqi; Jiang, Xue; Zheng, Weiying. Exponential convergence of Cartesian PML method for Maxwell’s equations in a two-layer medium. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 3, pp. 929-956. doi : 10.1051/m2an/2019082. http://www.numdam.org/articles/10.1051/m2an/2019082/

G. Bao and H. Wu, Convergence analysis of the perfectly matched layer problems for time-harmonic Maxwell’s equations. SIAM J. Numer. Anal. 43 (2005) 2121–2143. | DOI | MR | Zbl

G. Bao, Z. Chen and H. Wu, An adaptive finite element method for diffraction gratings. J. Opt. Soc. Am. A 22 (2005) 1106–1114. | DOI | MR

G. Bao, P. Li and H. Wu, An adaptive finite element method with perfectly matched absorbing layers for wave scattering by periodic structures. Math. Comput. 79 (2010) 1–34. | DOI | MR | Zbl

J.P. Bérénger, A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114 (1994) 185–200. | DOI | MR | Zbl

J.H. Bramble and J.E. Pasciak, Analysis of a Cartesian PML approximation to the three dimensional electromagnetic wave scattering problem. Int. J. Numer. Anal. Modeling 9 (2012) 543–561. | MR | Zbl

J.H. Bramble and J.E. Pasciak, Analysis of a Cartesian PML approximation to acoustic scattering problems in ℝ2 and ℝ3. J. Comput. Appl. Math. 247 (2013) 209–230. | DOI | MR | Zbl

J.H. Bramble, J.E. Pasciak and D. Trenev, Analysis of a finite PML approximation to the three dimensional elastic wave scattering problem. Math. Comput. 79 (2010) 2079–2101. | DOI | MR | Zbl

A. Buffa, M. Costabel and D. Sheen, On traces for 𝐇 ( cur , Ω ) in Lipschitz domains. J. Math. Anal. Appl. 276 (2002) 845–867. | DOI | MR | Zbl

Z. Chen, Convergence of the time-domain perfectly matched layer method for acoustic problems. Int. J. Numer. Anal. Model. 6 (2009) 124–146. | MR | Zbl

J. Chen and Z. Chen, An adaptive perfectly matched layer technique for 3-D time-harmonic electromagnetic scattering problems. Math. Comput. 77 (2008) 673–698. | DOI | MR | Zbl

Z. Chen and X. Liu, An adaptive perfectly matched layer technique for time-harmonic scattering problems. SIAM J. Numer. Anal. 43 (2005) 645–671. | DOI | MR | Zbl

Z. Chen and H. Wu, An adaptive finite element method with perfectly matched absorbing layers for the wave scattering by periodic structures. SIAM J. Numer. Anal. 41 (2003) 799–826. | DOI | MR | Zbl

Z. Chen and X. Wu, An adaptive uniaxial perfectly matched layer method for time-harmonic scattering problems. Numer. Math.: Theory Methods App. 1 (2008) 113–137. | MR | Zbl

Z. Chen and X. Wu, Long-time stability and convergence of the uniaxial perfectly matched layer method for time-domain acoustic scattering problems. SIAM J. Numer. Anal. 50 (2012) 2632–2655. | DOI | MR | Zbl

Z. Chen and W. Zheng, Convergence of the uniaxial perfectly matched layer method for time-harmonic scattering problems in two-layer media. SIAM J. Numer. Anal. 48 (2010) 2158–2185. | DOI | MR | Zbl

Z. Chen and W. Zheng, PML method for electromagnetic scattering problem in a two-layer medium. SIAM J. Numer. Anal. 55 (2017) 2050–2084. | DOI | MR | Zbl

Z. Chen, T. Cui and L. Zhang, An adaptive uniaxial perfectly matched layer method for time harmonic Maxwell scattering problems. Numer. Math. 125 (2013) 639–677. | DOI | MR | Zbl

Z. Chen, X. Xiang and X. Zhang, Convergence of the PML method for elastic wave scattering problems. Math. Comput. 85 (2016) 2687–2714. | DOI | MR | Zbl

W.-C. Chew, Waves and Fields in Inhomogenous Media. Van Nodtrand Reimhold, New York (1990). | Zbl

F. Collino and P. Monk, The perfectly matched layer in curvilinear coordinates. SIAM J. Sci. Comput. 19 (1998) 2061–2090. | DOI | MR | Zbl

P.M. Cutzach and C. Hazard, Existence and uniqueness and analyticity properties for electromagnetic scattering in a two-layered medium. Math. Meth. Appl. Sci. 21 (1998) 433–461. | DOI | MR | Zbl

T. Hagstrom, Radiation boundary conditions for the numerical simulation of waves. Acta Numer. 8 (1999) 47–106. | DOI | MR | Zbl

T. Hohage, F. Schmidt and L. Zschiedrich, Solving time-harmonic scattering problems based on the pole condition. II: convergence of the PML method. SIAM J. Math. Anal. 35 (2003) 547–560. | DOI | MR | Zbl

X. Jiang and W. Zheng, Adaptive uniaxial perfectly matched layer method for multiple scattering problems. Comput. Methods Appl. Mech. Eng. 201 (2012) 42–52. | DOI | MR | Zbl

M. Lassas and E. Somersalo, On the existence and convergence of the solution of PML equations. Computing 60 (1998) 229–241. | DOI | MR | Zbl

M. Lassas and E. Somersalo, Analysis of the PML equations in general convex geometry. Proc. R. Soc. Edinburg (2001) 1183–1207. | DOI | MR | Zbl

P. Monk, Finite Element Methods for Maxwell’s Equations. Oxford University Press (2003). | DOI | MR | Zbl

J.C. Nédélec, Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems. Springer-Verlag, New York (2001). | DOI | MR | Zbl

X. Wu and W. Zheng, An adaptive perfectly matched layer method for multiple cavity scattering problems. Commun. Comput. Phys. 19 (2016) 534–558. | DOI | MR | Zbl

Cité par Sources :