Stochastic homogenization of a scalar viscoelastic model exhibiting stress–strain hysteresis
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 3, pp. 879-928.

Motivated by rate-independent stress–strain hysteresis observed in filled rubber, this article considers a scalar viscoelastic model in which the constitutive law is random and varies on a lengthscale which is small relative to the overall size of the solid. Using a variant of stochastic two-scale convergence as introduced by Bourgeat et al., we obtain the homogenized limit of the evolution, and demonstrate that under certain hypotheses, the homogenized model exhibits hysteretic behaviour which persists under asymptotically slow loading. These results are illustrated by means of numerical simulations in a particular one-dimensional instance of the model.

DOI : 10.1051/m2an/2019081
Classification : 74Q10, 35Q74
Mots-clés : Hysteresis, stochastic homogenization, viscoelasticity, nonlinear time-dependent PDEs
@article{M2AN_2020__54_3_879_0,
     author = {Hudson, Thomas and Legoll, Fr\'ed\'eric and Leli\`evre, Tony},
     title = {Stochastic homogenization of a scalar viscoelastic model exhibiting stress{\textendash}strain hysteresis},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {879--928},
     publisher = {EDP-Sciences},
     volume = {54},
     number = {3},
     year = {2020},
     doi = {10.1051/m2an/2019081},
     mrnumber = {4080783},
     zbl = {1434.74093},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2019081/}
}
TY  - JOUR
AU  - Hudson, Thomas
AU  - Legoll, Frédéric
AU  - Lelièvre, Tony
TI  - Stochastic homogenization of a scalar viscoelastic model exhibiting stress–strain hysteresis
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2020
SP  - 879
EP  - 928
VL  - 54
IS  - 3
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2019081/
DO  - 10.1051/m2an/2019081
LA  - en
ID  - M2AN_2020__54_3_879_0
ER  - 
%0 Journal Article
%A Hudson, Thomas
%A Legoll, Frédéric
%A Lelièvre, Tony
%T Stochastic homogenization of a scalar viscoelastic model exhibiting stress–strain hysteresis
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2020
%P 879-928
%V 54
%N 3
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2019081/
%R 10.1051/m2an/2019081
%G en
%F M2AN_2020__54_3_879_0
Hudson, Thomas; Legoll, Frédéric; Lelièvre, Tony. Stochastic homogenization of a scalar viscoelastic model exhibiting stress–strain hysteresis. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 3, pp. 879-928. doi : 10.1051/m2an/2019081. http://www.numdam.org/articles/10.1051/m2an/2019081/

[1] G. Allaire, Homogenization and two-scale convergence. SIAM J. Math. Anal. 23 (1992) 1482–1518. | DOI | MR | Zbl

[2] J.M. Ball, C. Chu and R.D. James, Hysteresis during stress-induced variant rearrangement. J. Phys. IV 5 (1995) C8–245–C8-251.

[3] H.H. Bauschke and P.L. Combettes, Convex analysis and monotone operator theory in Hilbert spaces, 1st edition. In: CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. Springer, Cham (2011). | MR | Zbl

[4] J. Bezanson, A. Edelman, S. Karpinski and V. Shah, Julia: a fresh approach to numerical computing. SIAM Rev. 59 (2017) 65–98. | DOI | MR | Zbl

[5] A. Bourgeat, A. Mikelić and S. Wright, Stochastic two-scale convergence in the mean and applications. J. Reine Angew. Math. 456 (1994) 19–51. | MR | Zbl

[6] A. Braides, Loss of polyconvexity by homogenization. Arch. Rational Mech. Anal. 127 (1994) 183–190. | DOI | MR | Zbl

[7] B. Dacorogna, Direct methods in the calculus of variations, 2nd edition. In: Vol. 78 of Applied Mathematical Sciences. Springer (2008). | MR | Zbl

[8] N. Dunford and J.T. Schwartz, Linear operators. I. general theory. With the assistance of W.G. Bade and R.G. Bartle. In Vol. 7 of Pure and Applied Mathematics. Interscience Publishers, Inc., New York; Interscience Publishers, Ltd., London (1958). | MR | Zbl

[9] M. Heida, Stochastic homogenization of rate-independent systems and applications. Continuum Mech. Thermodyn. 29 (2017) 853–894. | DOI | MR | Zbl

[10] M. Heida and B. Schweizer, Non-periodic homogenization of infinitesimal strain plasticity equations. ZAMM – J. Appl. Math. Mech. 96 (2016) 5–23. | DOI | MR | Zbl

[11] V.V. Jikov, S.M. Kozlov and O.A. Olejnik, Homogenization of Differential Operators and Integral Functionals. Springer-Verlag, Berlin (1994). | DOI | MR | Zbl

[12] M. Kaliske and H. Rothert, Constitutive approach to rate-independent properties of filled elastomers. Int. J. Solids Struct. 35 (1998) 2057–2071. | DOI | Zbl

[13] M. Klüppel, Filler-Reinforced Elastomers/Scanning Force Microscopy, edited by B. Capella, M. Geuss, M. Klüppel, M. Munz, E. Schulz, H. Sturm.The role of disorder in filler reinforcement of elastomers on various length scales. Springer, Berlin, Heidelberg (2003) 1–86.

[14] A.A. Likhachev and K. Ullakko, Magnetic-field-controlled twin boundaries motion and giant magneto-mechanical effects in Ni–Mn–Ga shape memory alloy. Phys. Lett. A 275 (2000) 142–151. | DOI

[15] A. Lion, A constitutive model for carbon black filled rubber: experimental investigations and mathematical representation. Continuum Mech. Thermodyn. 8 (1996) 153–169. | DOI

[16] W.V. Mars and A. Fatemi, Factors that affect the fatigue life of rubber: a literature survey. Rubber Chem. Technol. 77 (2004) 391–412. | DOI

[17] B. Marvalova, Viscoelastic properties of filled rubber. Experimental observations and material modelling. Eng. Mech. 14 (2007) 81–89.

[18] C. Miehe and J. Keck, Superimposed finite elastic–viscoelastic–plastoelastic stress response with damage in filled rubbery polymers. Experiments, modelling and algorithmic implementation. J. Mech. Phys. Solids 48 (2000) 323–365. | DOI | Zbl

[19] A. Mielke, On evolutionary Γ -convergence for gradient systems, Macroscopic and Large Scale Phenomena: Coarse Graining, Mean Field Limits and Ergodicity, edited by A. Muntean, J. Rademacher and A. Zagaris. In Lecture Notes in Applied Mathematics and Mechanics, Springer, 2015, pp. 187–249. | MR

[20] G. Nguetseng, A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20 (1989) 608–623. | DOI | MR | Zbl

[21] R.T. Rockafellar, Convex analysis. In Vol. 28 of Princeton Mathematical Series. Princeton University Press (1970). | MR | Zbl

[22] T. Roubček, Nonlinear partial differential equations with applications, 2nd edition. In Vol. 153 of International Series of Numerical Mathematics. Birkhauser (2013). | MR | Zbl

[23] L. Tartar, Memory effects and homogenization. Arch. Ration. Mech. Anal. 111 (1990) 121–133. | DOI | MR | Zbl

[24] L.R.G. Treloar, The Physics of Rubber Elasticity. Oxford University Press, USA (1975).

[25] C. Truesdell and W. Noll, The Non-linear Field Theories of Mechanics. 3rd ed. Springer-Verlag, Berlin (2004).

[26] A. Visintin, Differential models of hysteresis. In Vol. 111 of Applied Mathematical Sciences, Springer-Verlag, Berlin (1994). | MR | Zbl

[27] V.V. Zhikov and A.L. Pyatnitskii, Homogenization of random singular structures and random measures. Izvestiya: Math. 70 (2006) 19. | DOI | MR | Zbl

Cité par Sources :