In this paper, we study the optimal error estimates of the classical discontinuous Galerkin method for time-dependent 2-D hyperbolic equations using P$$ elements on uniform Cartesian meshes, and prove that the error in the L2 norm achieves optimal (k + 1)th order convergence when upwind fluxes are used. For the linear constant coefficient case, the results hold true for arbitrary piecewise polynomials of degree k ≥ 0. For variable coefficient and nonlinear cases, we give the proof for piecewise polynomials of degree k = 0, 1, 2, 3 and k = 2, 3, respectively, under the condition that the wind direction does not change. The theoretical results are verified by numerical examples.
Mots-clés : Optimal error estimate, discontinuous Galerkin method, upwind fluxes
@article{M2AN_2020__54_2_705_0, author = {Liu, Yong and Shu, Chi-Wang and Zhang, Mengping}, title = {Optimal error estimates of the semidiscrete discontinuous {Galerkin} methods for two dimensional hyperbolic equations on {Cartesian} meshes using $P^k$ elements}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {705--726}, publisher = {EDP-Sciences}, volume = {54}, number = {2}, year = {2020}, doi = {10.1051/m2an/2019080}, mrnumber = {4076058}, zbl = {1439.65115}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2019080/} }
TY - JOUR AU - Liu, Yong AU - Shu, Chi-Wang AU - Zhang, Mengping TI - Optimal error estimates of the semidiscrete discontinuous Galerkin methods for two dimensional hyperbolic equations on Cartesian meshes using $P^k$ elements JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2020 SP - 705 EP - 726 VL - 54 IS - 2 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2019080/ DO - 10.1051/m2an/2019080 LA - en ID - M2AN_2020__54_2_705_0 ER -
%0 Journal Article %A Liu, Yong %A Shu, Chi-Wang %A Zhang, Mengping %T Optimal error estimates of the semidiscrete discontinuous Galerkin methods for two dimensional hyperbolic equations on Cartesian meshes using $P^k$ elements %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2020 %P 705-726 %V 54 %N 2 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2019080/ %R 10.1051/m2an/2019080 %G en %F M2AN_2020__54_2_705_0
Liu, Yong; Shu, Chi-Wang; Zhang, Mengping. Optimal error estimates of the semidiscrete discontinuous Galerkin methods for two dimensional hyperbolic equations on Cartesian meshes using $P^k$ elements. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 2, pp. 705-726. doi : 10.1051/m2an/2019080. http://www.numdam.org/articles/10.1051/m2an/2019080/
Superconvergence of discontinuous Galerkin method for scalar nonlinear hyperbolic equations. SIAM J. Numer. Anal. 56 (2018) 732–765. | DOI | MR | Zbl
, , and ,The Finite Element Method for Elliptic Problems, North Holland, Amsterdam, New York (1978). | MR | Zbl
,TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math. Comput. 52 (1989) 411–435. | MR | Zbl
and ,The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35 (1998) 2440–2465. | DOI | MR | Zbl
and ,The Runge–Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141 (1998) 199–224. | DOI | MR | Zbl
and ,TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems. J. Comput. Phys. 84 (1989) 90–113. | DOI | MR | Zbl
, and ,The Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case. Math. Comput. 54 (1990) 545–581. | MR | Zbl
, and ,Optimal convergence of the original DG method for the transport-reaction equation on special meshes. SIAM J. Numer. Anal. 46 (2008) 1250–1265. | DOI | MR | Zbl
, and ,Strong stability-preserving high-order time discretization methods. SIAM Rev. 43 (2001) 89–112. | DOI | MR | Zbl
, and ,Optimal error estimates of the semidiscrete central discontinuous Galerkin methods for linear hyperbolic equations. SIAM J. Numer. Anal. 56 (2018) 520–541. | DOI | MR | Zbl
, and ,Optimal error estimates for discontinuous Galerkin methods based on upwind-biased fluxes for linear hyperbolic equations. Math. Comput. 85 (2016) 1225–1261. | DOI | MR | Zbl
, and ,Riemann solvers, the entropy conditions, and difference. SIAM J. Numer. Anal. 21 (1984) 217–235. | DOI | MR | Zbl
,Triangular Mesh Methods for the Neutron Transport Equation. Los Alamos Scientific Laboratory report LA-UR-74-479, Los Alamos, NM (1973).
and ,An optimal-order error estimate for the discontinuous Galerkin method. Math. Comput. 50 (1988) 75–88. | DOI | MR | Zbl
,Optimal error estimates of the semidiscrete local discontinuous galerkin methods for high order wave equations. SIAM J. Numer. Anal. 50 (2012) 79–104. | DOI | MR | Zbl
and ,Error estimates to smooth solutions of Runge–Kutta discontinuous Galerkin methods for scalar conservation laws. SIAM J. Numer. Anal. 42 (2004) 641–666. | DOI | MR | Zbl
and ,Cité par Sources :