Exact simulation of first exit times for one-dimensional diffusion processes
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 3, pp. 811-844.

The simulation of exit times for diffusion processes is a challenging task since it concerns many applications in different fields like mathematical finance, neuroscience, reliability… The usual procedure is to use discretization schemes which unfortunately introduce some error in the target distribution. Our aim is to present a new algorithm which simulates exactly the exit time for one-dimensional diffusions. This acceptance-rejection algorithm requires to simulate exactly the exit time of the Brownian motion on one side and the Brownian position at a given time, constrained not to have exit before, on the other side. Crucial tools in this study are the Girsanov transformation, the convergent series method for the simulation of random variables and the classical rejection sampling. The efficiency of the method is described through theoretical results and numerical examples.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1051/m2an/2019077
Classification : 65C05, 65N75, 60G40
Mots-clés : Exit time, Brownian motion, diffusion processes, Girsanov’s transformation, rejection sampling, exact simulation, randomized algorithm, conditioned Brownian motion
@article{M2AN_2020__54_3_811_0,
     author = {Herrmann, Samuel and Zucca, Cristina},
     title = {Exact simulation of first exit times for one-dimensional diffusion processes},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {811--844},
     publisher = {EDP-Sciences},
     volume = {54},
     number = {3},
     year = {2020},
     doi = {10.1051/m2an/2019077},
     mrnumber = {4080787},
     zbl = {07197800},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2019077/}
}
TY  - JOUR
AU  - Herrmann, Samuel
AU  - Zucca, Cristina
TI  - Exact simulation of first exit times for one-dimensional diffusion processes
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2020
SP  - 811
EP  - 844
VL  - 54
IS  - 3
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2019077/
DO  - 10.1051/m2an/2019077
LA  - en
ID  - M2AN_2020__54_3_811_0
ER  - 
%0 Journal Article
%A Herrmann, Samuel
%A Zucca, Cristina
%T Exact simulation of first exit times for one-dimensional diffusion processes
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2020
%P 811-844
%V 54
%N 3
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2019077/
%R 10.1051/m2an/2019077
%G en
%F M2AN_2020__54_3_811_0
Herrmann, Samuel; Zucca, Cristina. Exact simulation of first exit times for one-dimensional diffusion processes. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 3, pp. 811-844. doi : 10.1051/m2an/2019077. http://www.numdam.org/articles/10.1051/m2an/2019077/

L. Alili, P. Patie and J.L. Pedersen, Representations of the first hitting time density of an Ornstein-Uhlenbeck process. Stoch. Models 21 (2005) 967–980. | DOI | MR | Zbl

P. Baldi, L. Caramellino and M.G. Iovino, Pricing general barrier options: a numerical approach using sharp large deviations. Math. Finance 9 (1999) 293–322. | DOI | MR | Zbl

R.F. Bass, Diffusions and elliptic operators. In: Probability and its Applications (New York), Springer-Verlag, New York, 1998. | MR | Zbl

A. Beskos and G.O. Roberts, Exact simulation of diffusions. Ann. Appl. Probab. 15 (2005) 2422–2444. | DOI | MR | Zbl

A. Beskos, O. Papaspiliopoulos and G.O. Roberts, Retrospective exact simulation of diffusion sample paths with applications. Bernoulli 12 (2006) 1077–1098. | DOI | MR | Zbl

A. Beskos, O. Papaspiliopoulos and G.O. Roberts, A factorisation of diffusion measure and finite sample path constructions. Methodol. Comput. Appl. Probab. 10 (2008) 85–104. | DOI | MR | Zbl

A.N. Borodin and P. Salminen, Handbook of Brownian motion – facts and formulae. Probability and its Applications. 2nd ed. Birkhäuser Verlag, Basel (2002). | MR | Zbl

M. Broadie, P. Glasserman and S. Kou, A continuity correction for discrete barrier options, Math. Finance 7 (1997) 325–349. | DOI | MR | Zbl

D.R. Cox and H.D. Miller, The Theory of Stochastic Processes. John Wiley & Sons Inc, New York (1965). | MR | Zbl

D.A. Darling and A.J.F. Siegert, The first passage problem for a continuous Markov process, Ann. Math. Stat. 24 (1953) 624–639. | DOI | MR | Zbl

L. Devroye, Nonuniform Random Variate Generation. Springer-Verlag, New York (1986). | DOI | MR | Zbl

G. D’Onofrio and E. Pirozzi, Asymptotics of two-boundary first-exit-time densities for Gauss–Markov processes. Methodol. Comput. Appl. Probab. 21 (2019) 735–752. | DOI | MR | Zbl

E. Gobet, Weak approximation of killed diffusion using Euler schemes. Stochastic Process. Appl. 87 (2000) 167–197. | DOI | MR | Zbl

E. Gobet and S. Menozzi, Stopped diffusion processes: boundary corrections and overshoot. Stochastic Process. Appl. 120 (2010) 130–162. | DOI | MR | Zbl

S. Herrmann and C. Zucca, Exact simulation of the first-passage time of diffusions. J. Sci. Comput. 79 (2019) 1477–1504. | DOI | MR | Zbl

K. Itô and H.P. Mckean, Diffusion Processes and Their Sample Paths. Second printing, corrected, Die Grundlehren der mathematischen Wissenschaften, Band 125. Springer-Verlag, Berlin-New York (1974). | MR | Zbl

P.A. Jenkins, Exact simulation of the sample paths of a diffusion with a finite entrance boundary, Preprint (2013). | arXiv

I. Karatzas and S.E. Shreve, Brownian motion and stochastic calculus, 2nd edition. In: Vol. 113 of Graduate Texts in Mathematics. Springer-Verlag, New York (1991). | MR | Zbl

A. Lejay, Exitbm: a library for simulating Brownian motion’s exit times and positions from simple domains. Technical Report INRIA RR-7523 (2011).

G.N. Milstein and M.V. Tretyakov, Simulation of a space-time bounded diffusion. Ann. Appl. Probab. 9 (1999) 732–779. | DOI | MR | Zbl

L. Sacerdote, O. Telve and C. Zucca, Joint densities of first hitting times of a diffusion process through two time-dependent boundaries. Adv. Appl. Probab. 46 (2014) 186–202. | DOI | MR | Zbl

E.T. Whittaker and G.N. Watson, A Course of Modern Analysis. Cambridge Mathematical Library. Reprint of the fourth (1927) edition. Cambridge University Press, Cambridge (1996). | DOI | MR | Zbl

Cité par Sources :