Ergodic SDEs on submanifolds and related numerical sampling schemes
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 2, pp. 391-430.

In many applications, it is often necessary to sample the mean value of certain quantity with respect to a probability measure μ on the level set of a smooth function ξ : ℝ$$ → ℝ$$, 1 ≤ k < d. A specially interesting case is the so-called conditional probability measure, which is useful in the study of free energy calculation and model reduction of diffusion processes. By Birkhoff’s ergodic theorem, one approach to estimate the mean value is to compute the time average along an infinitely long trajectory of an ergodic diffusion process on the level set whose invariant measure is μ. Motivated by the previous work of Ciccotti et al. (Commun. Pur. Appl. Math. 61 (2008) 371–408), as well as the work of Leliévre et al. (Math. Comput. 81 (2012) 2071–2125), in this paper we construct a family of ergodic diffusion processes on the level set of ξ whose invariant measures coincide with the given one. For the conditional measure, we propose a consistent numerical scheme which samples the conditional measure asymptotically. The numerical scheme doesn’t require computing the second derivatives of ξ and the error estimates of its long time sampling efficiency are obtained.

DOI : 10.1051/m2an/2019071
Classification : 65C05, 58J65
Mots-clés : Ergodic diffusion process, reaction coordinate, level set, conditional probability measure
@article{M2AN_2020__54_2_391_0,
     author = {Zhang, Wei},
     title = {Ergodic {SDEs} on submanifolds and related numerical sampling schemes},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {391--430},
     publisher = {EDP-Sciences},
     volume = {54},
     number = {2},
     year = {2020},
     doi = {10.1051/m2an/2019071},
     mrnumber = {4062755},
     zbl = {07201589},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2019071/}
}
TY  - JOUR
AU  - Zhang, Wei
TI  - Ergodic SDEs on submanifolds and related numerical sampling schemes
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2020
SP  - 391
EP  - 430
VL  - 54
IS  - 2
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2019071/
DO  - 10.1051/m2an/2019071
LA  - en
ID  - M2AN_2020__54_2_391_0
ER  - 
%0 Journal Article
%A Zhang, Wei
%T Ergodic SDEs on submanifolds and related numerical sampling schemes
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2020
%P 391-430
%V 54
%N 2
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2019071/
%R 10.1051/m2an/2019071
%G en
%F M2AN_2020__54_2_391_0
Zhang, Wei. Ergodic SDEs on submanifolds and related numerical sampling schemes. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 2, pp. 391-430. doi : 10.1051/m2an/2019071. http://www.numdam.org/articles/10.1051/m2an/2019071/

[1] A. Abdulle, G. Vilmart and K. Zygalakis, High order numerical approximation of the invariant measure of ergodic SDEs. SIAM J. Numer. Anal. 52 (2014) 1600–1622. | DOI | MR | Zbl

[2] L. Ambrosio and H.M. Soner, Level set approach to mean curvature flow in arbitrary codimension. J. Differ. Geom. 43 (1996) 693–737. | DOI | MR | Zbl

[3] L. Ambrosio, N. Gigli and G. Savaré, Gradient flows: in metric spaces and in the space of probability measures. Lectures in Mathematics. Birkhäuser (2005). | MR | Zbl

[4] D. Bakry and M. Émery, Hypercontractivité de semi-groupes de diffusion. C. R. Math. Acad. Sci. Paris, Ser. I 299 (1984) 775–778. | MR | Zbl

[5] A. Banyaga and D. Hurtubise, In:Lectures on Morse Homology. Texts in the Mathematical Sciences. Springer, Netherlands (2004). | DOI | MR | Zbl

[6] R.L. Bishop and R.J. Crittenden, Geometry of Manifolds. In: AMS/Chelsea Publication Series.. American Mathematical Society (1964). | MR | Zbl

[7] N. Bou-Rabee and H. Owhadi, Long-run accuracy of variational integrators in the stochastic context. SIAM J. Numer. Anal. 48 (2010) 278–297. | DOI | MR | Zbl

[8] M. Brubaker, M. Salzmann and R. Urtasun, A family of MCMC methods on implicitly defined manifoldsm, edited by N.D. Lawrence and M. Girolami. In: Proceedings of the Fifteenth International Conference on Artificial Intelligence and Statistics. Vol. 22 of Proceedings of Machine Learning Research (2012) 161–172.

[9] G. Ciccotti, R. Kapral and E. Vanden-Eijnden, Blue moon sampling, vectorial reaction coordinates, and unbiased constrained dynamics. ChemPhysChem 6 (2005) 1809–1814. | DOI

[10] G. Ciccotti, T. Lelièvre and E. Vanden-Eijnden, Projection of diffusions on submanifolds: application to mean force computation. Commun. Pur. Appl. Math. 61 (2008) 371–408. | DOI | MR | Zbl

[11] A. Debussche and E. Faou, Weak backward error analysis for SDEs. SIAM J. Numer. Anal. 50 (2012) 1735–1752. | DOI | MR | Zbl

[12] M.P. Do Carmo, Riemannian Geometry. Mathematics. Birkhäuser, Boston, MA (1992). | DOI | MR | Zbl

[13] I. Fatkullin, G. Kovačič and E. Vanden-Eijnden, Reduced dynamics of stochastically perturbed gradient flows. Commun. Math. Sci. 8 (2010) 439–461. | DOI | MR | Zbl

[14] G. Froyland, G.A. Gottwald and A. Hammerlindl, A computational method to extract macroscopic variables and their dynamics in multiscale systems. SIAM J. Appl. Dyn. Syst. 13 (2014) 1816–1846. | DOI | MR | Zbl

[15] T. Funaki and H. Nagai, Degenerative convergence of diffusion process toward a submanifold by strong drift. Stoch. Stoch. Rep. 44 (1993) 1–25. | DOI | MR | Zbl

[16] M. Girolami and B. Calderhead, Riemann manifold Langevin and Hamiltonian Monte Carlo methods. J. R. Stat. Soc. B. 73 (2011) 123–214. | DOI | MR

[17] D. Givon, R. Kupferman and A.M. Stuart, Extracting macroscopic dynamics: model problems and algorithms. Nonlinearity 17 (2004) R55–R127. | DOI | MR | Zbl

[18] I. Gyöngy, Mimicking the one-dimensional marginal distributions of processes having an Ito differential. Probab. Th. Rel. Fields 71 (1986) 501–516. | DOI | MR | Zbl

[19] C. Hartmann, C. Schütte and W. Zhang, Jarzynski equality, fluctuation theorem, and variance reduction: mathematical analysis and numerical algorithms. J. Stat. Phys. 175 (2019) 1214–1261. | DOI | MR

[20] E.P. Hsu, Stochastic analysis on manifolds. In: Graduate Studies in Mathematics. American Mathematical Society (2002). | DOI | MR | Zbl

[21] J. Jost, Riemannian Geometry and Geometric Analysis. Universitext. Springer Berlin Heidelberg (2008). | MR | Zbl

[22] G.S. Katzenberger, Solutions of a stochastic differential equation forced onto a manifold by a large drift. Ann. Probab. 19 (1991) 1587–1628. | DOI | MR | Zbl

[23] I.G. Kevrekidis and G. Samaey, Equation-free multiscale computation: algorithms and applications. Annu. Rev. Phys. Chem. 60 (2009) 321–344. | DOI

[24] I.G. Kevrekidis, C.W. Gear, J.M. Hyman, P.G. Kevrekidid, O. Runborg and C. Theodoropoulos, Equation-free, coarse-grained multiscale computation: enabling mocroscopic simulators to perform system-level analysis. Commun. Math. Sci. 1 (2003) 715–762. | DOI | MR | Zbl

[25] I.G. Kevrekidis, C.W. Gear and G. Hummer, Equation-free: the computer-aided analysis of complex multiscale systems. AIChE J. 50 (2004) 1346–1355. | DOI

[26] F. Legoll and T. Lelièvre, Effective dynamics using conditional expectations. Nonlinearity 23 (2010) 2131–2163. | DOI | MR | Zbl

[27] B. Leimkuhler and C. Matthews, Efficient molecular dynamics using geodesic integration and solvent–solute splitting. Proc. Math. Phys. Eng. Sci. 472 (2016) 20160138. | MR

[28] B. Leimkuhler, C. Matthews and G. Stoltz, The computation of averages from equilibrium and nonequilibrium Langevin molecular dynamics. IMA J. Numer. Anal. 36 (2016) 13–79. | MR

[29] T. Lelièvre and W. Zhang, Pathwise estimates for effective dynamics: the case of nonlinear vectorial reaction coordinates. Preprint (2018). | arXiv | MR

[30] T. Lelièvre, M. Rousset and G. Stoltz, Free Energy Computations: A Mathematical Perspective. Imperial College Press (2010). | DOI | MR | Zbl

[31] T. Lelièvre, M. Rousset and G. Stoltz, Langevin dynamics with constraints and computation of free eneregy differences. Math. Comput. 81 (2012) 2071–2125. | DOI | MR | Zbl

[32] T. Lelievre, M. Rousset and G. Stoltz, Hybrid Monte Carlo methods for sampling probability measures on submanifolds. Preprint (2018). | arXiv | MR

[33] A.J. Majda, C. Franzke and B. Khouider, An applied mathematics perspective on stochastic modelling for climate. Philos. Trans. R. Soc. A 366 (2008) 2429–2455. | DOI | MR | Zbl

[34] L. Maragliano and E. Vanden-Eijnden, A temperature accelerated method for sampling free energy and determining reaction pathways in rare events simulations. Chem. Phys. Lett. 426 (2006) 168–175. | DOI

[35] J.C. Mattingly, A.M. Stuart and M.V. Tretyakov, Convergence of numerical time-averaging and stationary measures via Poisson equations. SIAM J. Numer. Anal. 48 (2010) 552–577. | DOI | MR | Zbl

[36] G.A. Pavliotis and A.M. Stuart. In: Multiscale Methods: Averaging and Homogenization. Texts in Applied Mathematics. Springer, New York (2008). | MR | Zbl

[37] P. Petersen, Riemannian Geometry. In: Graduate Texts in Mathematics. Springer New York (2006). | DOI | MR | Zbl

[38] K.B. Petersen and M.S. Pedersen, The Matrix Cookbook. http://www2.imm.dtu.dk/pubdb/p.php?3274 (2012) Version 20121115.

[39] K.T. Sturm, Convex functionals of probability measures and nonlinear diffusions on manifolds. J. Math. Pures Appl. 84 (2005) 149–168. | DOI | MR | Zbl

[40] D. Talay and L. Tubaro, Expansion of the global error for numerical schemes solving stochastic differential equations. Stoch. Anal. Appl. 8 (1990) 483–509. | DOI | MR | Zbl

[41] E. Vanden-Eijnden, Numerical techniques for multi-scale dynamical systems with stochastic effects. Commun. Math. Sci. 1 (2003) 385–391. | DOI | MR | Zbl

[42] E. Weinan, B. Engquist, X. Li, W. Ren and E. Vanden-Eijnden, Heterogeneous multiscale methods: a review. Commun. Comput. Phys. 2 (2007) 367–450. | MR | Zbl

[43] E. Zappa, M. Holmes-Cerfon and J. Goodman, Monte Carlo on manifolds: sampling densities and integrating functions. Commun. Pure Appl. Math. 71 (2018) 2609–2647. | DOI | MR

[44] W. Zhang, C. Hartmann and C. Schütte, Effective dynamics along given reaction coordinates, and reaction rate theory. Faraday Discuss. 195 (2016) 365–394. | DOI

Cité par Sources :