A minimum entropy principle in the compressible multicomponent Euler equations
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 2, pp. 373-389.

In this work, the space of admissible entropy functions for the compressible multicomponent Euler equations is explored, following up on Harten (J. Comput. Phys. 49 (1983) 151–164). This effort allows us to prove a minimum entropy principle on entropy solutions, whether smooth or discrete, in the same way it was originally demonstrated for the compressible Euler equations by Tadmor (Appl. Numer. Math. 49 (1986) 211–219).

DOI : 10.1051/m2an/2019070
Classification : 76N10, 76N15, 35L65, 65M12
Mots-clés : Euler equations, multicomponent, entropy pairs, entropy stability, minimum principle
@article{M2AN_2020__54_2_373_0,
     author = {Gouasmi, Ayoub and Duraisamy, Karthik and Murman, Scott M. and Tadmor, Eitan},
     title = {A minimum entropy principle in the compressible multicomponent {Euler} equations},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {373--389},
     publisher = {EDP-Sciences},
     volume = {54},
     number = {2},
     year = {2020},
     doi = {10.1051/m2an/2019070},
     mrnumber = {4062757},
     zbl = {1434.76101},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2019070/}
}
TY  - JOUR
AU  - Gouasmi, Ayoub
AU  - Duraisamy, Karthik
AU  - Murman, Scott M.
AU  - Tadmor, Eitan
TI  - A minimum entropy principle in the compressible multicomponent Euler equations
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2020
SP  - 373
EP  - 389
VL  - 54
IS  - 2
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2019070/
DO  - 10.1051/m2an/2019070
LA  - en
ID  - M2AN_2020__54_2_373_0
ER  - 
%0 Journal Article
%A Gouasmi, Ayoub
%A Duraisamy, Karthik
%A Murman, Scott M.
%A Tadmor, Eitan
%T A minimum entropy principle in the compressible multicomponent Euler equations
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2020
%P 373-389
%V 54
%N 2
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2019070/
%R 10.1051/m2an/2019070
%G en
%F M2AN_2020__54_2_373_0
Gouasmi, Ayoub; Duraisamy, Karthik; Murman, Scott M.; Tadmor, Eitan. A minimum entropy principle in the compressible multicomponent Euler equations. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 2, pp. 373-389. doi : 10.1051/m2an/2019070. http://www.numdam.org/articles/10.1051/m2an/2019070/

[1] F. Chalot, T.J.R. Hughes and F. Shakib, Symmetrization of conservation laws with entropy for high-temperature hypersonic computations. Comput. Syst. Eng. 1 (1990) 495–521. | DOI

[2] M.O. Delchini, J.C. Ragusa and R.A. Berry, Viscous regularization for the non-equilibrium seven-equation two-phase flow model. J. Sci. Comput. 69 (2016) 764–804. | DOI | MR

[3] M.O. Delchini, J.C. Ragusa and J. Ferguson, Viscous regularization of the full set of nonequilibrium-diffusion Grey Radiation-Hydrodynamic equations. Int. J. Numer. Methods Fluids 85 (2017) 30–47. | DOI | MR

[4] K.O. Friedrichs and P.D. Lax, Systems of conservation equations with a convex extension. Proc. Nat. Acad. Sci. 68 (1971) 1686–1688. | DOI | MR | Zbl

[5] R. Frolov, An efficient algorithm for the multicomponent compressible Navier-Stokes equations in low- and high-Mach number regimes. Comput. Fluids 178 (2019) 15–40. | DOI | MR

[6] V. Giovangigli, Multicomponent Flow Modeling. Birkhauser, Boston (1999). | DOI | MR | Zbl

[7] V. Giovangigli and L. Matuszewski, Structure of entropies in dissipative multicomponent fluids. Kin. Rel. Models 6 (2013) 373–406. | DOI | MR | Zbl

[8] S.K. Godunov, A difference scheme for numerical computation of discontinuous solutions of equations of fluid dynamics. Math. Sbornik 47 (1959) 271–306. | MR

[9] A. Gouasmi, K.D. Duraisamy and S.M. Murman, Formulation of entropy-stable schemes for the compressible multicomponent Euler equations. SIAM J. Appl. Math.. Preprint 2019). | arXiv | MR

[10] J.L. Guermond and B. Popov, Viscous regularization of the Euler equations and entropy principles. SIAM J. Appl. Math. 74 (2014) 284–305. | DOI | MR | Zbl

[11] J.L. Guermond and B. Popov, Invariant domain and first-order continuous finite element approximation for hyperbolic systems. SIAM J. Numer. Anal. 54 (2016) 2466–2489. | DOI | MR

[12] J.L. Guermond and B. Popov, Fast estimation from above of the maximum wave speed in the Riemann problem for the Euler equations. J. Comput. Phys. 328 (2016) 908–926. | DOI | MR

[13] J.L. Guermond, M. Nazarov, B. Popov and I. Tomas, Second-order invariant domain preserving approximation of the Euler equations using convex limiting. SIAM J. Sci. Comput. 40 (2018) 3211–3239. | DOI | MR

[14] J.-L. Guermond, B. Popov and I. Tomas, Invariant domain preserving discretization-independent schemes and convex limiting for hyperbolic systems. Comput. Methods Appl. Mech. Eng. 347 (2019) 143–175. | DOI | MR

[15] A. Harten, P.D. Lax and B. Van Leer, On upstream differencing and godunov-type schemes for hyperbolic conservation laws. SIAM Rev. 25 (1983) 35–61. | DOI | MR | Zbl

[16] A. Harten, On the symmetric form of systems of conservation laws with entropy. J. Comput. Phys. 49 (1983) 151–164. | DOI | MR | Zbl

[17] A. Harten, P.D. Lax, C.D. Levermore and W.J. Morokoff, Convex entropies and hyperbolicity for general Euler equations. SIAM J. Numer. Anal. 33 (1998) 2117–2127. | DOI | MR | Zbl

[18] D. Kröner, P.G. Lefloch and M. Thanh, The minimum entropy principle for compressible fluid flows in a nozzle with discontinuous cross-section. ESAIM: M2AN 42 (2008) 425–442. | DOI | Numdam | MR | Zbl

[19] S.N. Kružhkov, First-order quasilinear equations in several independent variables. Math. USSR-Sbornik 10 (1970) 217. | DOI | MR | Zbl

[20] P.D. Lax, Hyperbolic systems of conservation laws II. Commun. Pure Appl. Math. 10 (1957) 537–566. | DOI | MR | Zbl

[21] P.D. Lax, Shock waves and entropy, edited by E. Zarantonello. In: Contributions to Nonlinear Functional Analysis. Academia Press, New York (1971) 603–634. | DOI | MR | Zbl

[22] Y. Lv and M. Ihme, Entropy-bounded discontinuous Galerkin scheme for Euler equations. J. Comput. Phys. 295 (2015) 715–773. | DOI | MR

[23] M.S. Mock, Systems of conservation laws of mixed type. J. Differ. Equ. 70 (1980) 70–88. | DOI | MR | Zbl

[24] E. Tadmor, Skew-Self adjoint form for systems of conservation laws. J. Math. Anal. App. 103 (1984) 428–442. | DOI | MR | Zbl

[25] E. Tadmor, Numerical viscosity and the entropy condition for conservative difference schemes. Math. Comput. 43 (1984) 369–381. | DOI | MR | Zbl

[26] E. Tadmor, A minimum entropy principle in the gas dynamics equations. Appl. Numer. Math. 2 (1986) 211–219. | DOI | MR | Zbl

[27] E. Tadmor, The numerical viscosity of entropy stable schemes for systems of conservation laws I. Math. Comput. 49 (1987) 91–103. | DOI | MR | Zbl

[28] E.F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction, 3rd edition. Springer, Berlin (2009). | DOI | MR | Zbl

[29] X. Zhang and C.-W. Shu, A minimum entropy principle of high order schemes for gas dynamics equations. Numer. Math. 121 (2012) 545–563. | DOI | MR | Zbl

Cité par Sources :