Chemotaxis on networks: Analysis and numerical approximation
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 4, pp. 1339-1372.

We consider the Keller–Segel model of chemotaxis on one-dimensional networks. Using a variational characterization of solutions, positivity preservation, conservation of mass, and energy estimates, we establish global existence of weak solutions and uniform bounds. This extends related results of Osaki and Yagi to the network context. We then analyze the discretization of the system by finite elements and an implicit time-stepping scheme. Mass lumping and upwinding are used to guarantee the positivity of the solutions on the discrete level. This allows us to deduce uniform bounds for the numerical approximations and to establish order optimal convergence of the discrete approximations to the continuous solution without artificial smoothness requirements. In addition, we prove convergence rates under reasonable assumptions. Some numerical tests are presented to illustrate the theoretical results.

DOI : 10.1051/m2an/2019069
Classification : 35K15, 35R02, 65M60, 92C17
Mots-clés : Chemotaxis, partial differential equations on networks, global solutions, finite elements, mass lumping, upwind discretization
@article{M2AN_2020__54_4_1339_0,
     author = {Egger, Herbert and Sch\"obel-Kr\"ohn, Lukas},
     title = {Chemotaxis on networks: {Analysis} and numerical approximation},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1339--1372},
     publisher = {EDP-Sciences},
     volume = {54},
     number = {4},
     year = {2020},
     doi = {10.1051/m2an/2019069},
     mrnumber = {4113054},
     zbl = {1445.35199},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2019069/}
}
TY  - JOUR
AU  - Egger, Herbert
AU  - Schöbel-Kröhn, Lukas
TI  - Chemotaxis on networks: Analysis and numerical approximation
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2020
SP  - 1339
EP  - 1372
VL  - 54
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2019069/
DO  - 10.1051/m2an/2019069
LA  - en
ID  - M2AN_2020__54_4_1339_0
ER  - 
%0 Journal Article
%A Egger, Herbert
%A Schöbel-Kröhn, Lukas
%T Chemotaxis on networks: Analysis and numerical approximation
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2020
%P 1339-1372
%V 54
%N 4
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2019069/
%R 10.1051/m2an/2019069
%G en
%F M2AN_2020__54_4_1339_0
Egger, Herbert; Schöbel-Kröhn, Lukas. Chemotaxis on networks: Analysis and numerical approximation. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 4, pp. 1339-1372. doi : 10.1051/m2an/2019069. http://www.numdam.org/articles/10.1051/m2an/2019069/

C. Berge, Graphs Second revision. North-Holland, Amsterdam, New York, Oxford (1985). | Zbl

R. Borsche, S. Göttlich, A. Klar and P. Schillen, The scalar Keller-Segel model on networks. Math. Models Methods Appl. Sci. 24 (2014) 221–247. | DOI | MR | Zbl

R. Borsche, J. Kall, A. Klar and T.N.H. Pham, Kinetic and related macroscopic models for chemotaxis on networks. Math. Models Methods Appl. Sci. 26 (2016) 1219–1242. | DOI | MR | Zbl

S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods. Springer (2008). | DOI | MR | Zbl

G. Bretti, R. Natalini and M. Ribot, A hyperbolic model of chemotaxis on a network: a numerical study. ESAIM: M2AN 48 (2014) 231–258. | DOI | Numdam | MR | Zbl

F. Camilli and L. Corrias, Parabolic models for chemotaxis on weighted networks. J. Math. Pures Appl. 108 (2017) 459–480. | DOI | MR | Zbl

A. Chertock, Y. Epshteyn, H. Hu and A. Kurganov, High-order positivity-preserving hybrid finite-volume-finite-difference methods for chemotaxis systems. Adv. Comput. Math. 44 (2017) 327–350. | DOI | MR | Zbl

P. Clément, Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 9 (1975) 77–84. | Numdam | MR | Zbl

R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology. Evolution problems. I, in Vol. 5. With the collaboration of Michel Artola, Michel Cessenat and Hélène Lanchon, Translated from the French by Alan Craig. Springer-Verlag, Berlin (1992). | MR | Zbl

Y. Epshteyn, Discontinuous Galerkin methods for the chemotaxis and haptotaxis models. J. Comput. Appl. Math. 224 (2009) 168–181. | DOI | MR | Zbl

L. Evans, Partial Differential Equations. American Mathematical Society (2010). | MR | Zbl

F. Filbet, A finite volume scheme for the Patlak–Keller–Segel chemotaxis model. Numer. Math. 104 (2006) 457–488. | DOI | MR | Zbl

J.G. Heywood and R. Rannacher. Finite-element approximation of the nonstationary Navier-Stokes problem. Part IV: error analysis for second-order time discretization. SIAM J. Numer. Anal. 27 (1990) 353–384. | DOI | MR | Zbl

H.G. Heuser, Functional Analysis. Translated from the German by John Horváth. A Wiley-Interscience Publication. John Wiley &Sons, Ltd., Chichester (1982). | MR | Zbl

T. Hillen, K.J. Painter, A user’s guide to pde models for chemotaxis. J. Math. Biol. 58 (2009) 183. | DOI | MR | Zbl

T. Hillen and A. Potapov, The one-dimensional chemotaxis model: global existence and asymptotic profile. Math. Methods Appl. Sci. 27 (2004) 1783–1801. | DOI | MR | Zbl

D. Horstmann, From 1970 util present: the Keller-Segel model in chemotaxis and its consequences I. Jahresber. DMV 105, 2003 (1970) 103–165. | MR | Zbl

E.F. Keller and L.A. Segel, Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26 (1970) 399–415. | DOI | MR | Zbl

E.F. Keller and L.A. Segel, Model for chemotaxis. J. Theor. Biol. 30 (1971) 225–234. | DOI | Zbl

D. Mugnolo, Semigroup Methods for Evolution Equations on Networks. Springer (2014). | DOI | MR | Zbl

E. Nakaguchi and A. Yagi, Full discrete approximations by Galerkin method for chemotaxis growth model. Nonlinear Anal. 47 (2001) 6097–6107. | DOI | MR | Zbl

K. Osaki and A. Yagi, Finite dimensional attractor for one-dimensional Keller–Segel equations, Funkc. Ekvacioj Ser I 44 (2001) 441–469. | MR | Zbl

R.J. Plemmons, M -matrix characterizations. I. Nonsingular M -matrices. Linear Algebra Appl. 18 (1977) 175–188. | DOI | MR | Zbl

T. Roubček, Nonlinear partial differential equations with applications, second edition. In: Vol. 153 of International Series of Numerical Mathematics. Birkhäuser/Springer Basel AG, Basel (2013). | MR | Zbl

N. Saito, Error analysis of a conservative finite-element approximation for the Keller-Segel system of chemotaxis. Commun. Pure Appl. Anal. 11 (2012) 339–364. | DOI | MR | Zbl

R. Strehl, A. Sokolov, D. Kuzmin, D. Horstmann and S. Turek, A positivity-preserving finite element method for chemotaxis problems in 3D. J. Comput. Appl. Math. 239 (2013) 290–303. | DOI | MR | Zbl

V. Thomée, Galerkin finite element methods for parabolic problems, second edition. In: Vol. 25 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin (2006). | MR | Zbl

R.S. Varga, Functional Analysis and Approximation Theory in Numerical Analysis. CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, Philadelphia (1971). | Zbl

M.F. Wheeler, A priori L 2 error estimates for Galerkin approximations to parabolic partial differential equations. SIAM J. Numer. Anal. 10 (1973) 723–759. | DOI | MR | Zbl

Cité par Sources :