We consider the Keller–Segel model of chemotaxis on one-dimensional networks. Using a variational characterization of solutions, positivity preservation, conservation of mass, and energy estimates, we establish global existence of weak solutions and uniform bounds. This extends related results of Osaki and Yagi to the network context. We then analyze the discretization of the system by finite elements and an implicit time-stepping scheme. Mass lumping and upwinding are used to guarantee the positivity of the solutions on the discrete level. This allows us to deduce uniform bounds for the numerical approximations and to establish order optimal convergence of the discrete approximations to the continuous solution without artificial smoothness requirements. In addition, we prove convergence rates under reasonable assumptions. Some numerical tests are presented to illustrate the theoretical results.
Keywords: Chemotaxis, partial differential equations on networks, global solutions, finite elements, mass lumping, upwind discretization
@article{M2AN_2020__54_4_1339_0,
author = {Egger, Herbert and Sch\"obel-Kr\"ohn, Lukas},
title = {Chemotaxis on networks: {Analysis} and numerical approximation},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
pages = {1339--1372},
year = {2020},
publisher = {EDP Sciences},
volume = {54},
number = {4},
doi = {10.1051/m2an/2019069},
mrnumber = {4113054},
zbl = {1445.35199},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an/2019069/}
}
TY - JOUR AU - Egger, Herbert AU - Schöbel-Kröhn, Lukas TI - Chemotaxis on networks: Analysis and numerical approximation JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2020 SP - 1339 EP - 1372 VL - 54 IS - 4 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/m2an/2019069/ DO - 10.1051/m2an/2019069 LA - en ID - M2AN_2020__54_4_1339_0 ER -
%0 Journal Article %A Egger, Herbert %A Schöbel-Kröhn, Lukas %T Chemotaxis on networks: Analysis and numerical approximation %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2020 %P 1339-1372 %V 54 %N 4 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/m2an/2019069/ %R 10.1051/m2an/2019069 %G en %F M2AN_2020__54_4_1339_0
Egger, Herbert; Schöbel-Kröhn, Lukas. Chemotaxis on networks: Analysis and numerical approximation. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 4, pp. 1339-1372. doi: 10.1051/m2an/2019069
, Graphs Second revision. North-Holland, Amsterdam, New York, Oxford (1985). | Zbl
, , and , The scalar Keller-Segel model on networks. Math. Models Methods Appl. Sci. 24 (2014) 221–247. | MR | Zbl | DOI
, , and , Kinetic and related macroscopic models for chemotaxis on networks. Math. Models Methods Appl. Sci. 26 (2016) 1219–1242. | MR | Zbl | DOI
and , The Mathematical Theory of Finite Element Methods. Springer (2008). | MR | Zbl | DOI
, and , A hyperbolic model of chemotaxis on a network: a numerical study. ESAIM: M2AN 48 (2014) 231–258. | MR | Zbl | Numdam | DOI
and , Parabolic models for chemotaxis on weighted networks. J. Math. Pures Appl. 108 (2017) 459–480. | MR | Zbl | DOI
, , and , High-order positivity-preserving hybrid finite-volume-finite-difference methods for chemotaxis systems. Adv. Comput. Math. 44 (2017) 327–350. | MR | Zbl | DOI
, Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 9 (1975) 77–84. | MR | Zbl | Numdam
and , Mathematical Analysis and Numerical Methods for Science and Technology. Evolution problems. I, in Vol. 5. With the collaboration of Michel Artola, Michel Cessenat and Hélène Lanchon, Translated from the French by Alan Craig. Springer-Verlag, Berlin (1992). | MR | Zbl
, Discontinuous Galerkin methods for the chemotaxis and haptotaxis models. J. Comput. Appl. Math. 224 (2009) 168–181. | MR | Zbl | DOI
, Partial Differential Equations. American Mathematical Society (2010). | MR | Zbl
, A finite volume scheme for the Patlak–Keller–Segel chemotaxis model. Numer. Math. 104 (2006) 457–488. | MR | Zbl | DOI
and . Finite-element approximation of the nonstationary Navier-Stokes problem. Part IV: error analysis for second-order time discretization. SIAM J. Numer. Anal. 27 (1990) 353–384. | MR | Zbl | DOI
, Functional Analysis. Translated from the German by John Horváth. A Wiley-Interscience Publication. John Wiley &Sons, Ltd., Chichester (1982). | MR | Zbl
, , A user’s guide to pde models for chemotaxis. J. Math. Biol. 58 (2009) 183. | MR | Zbl | DOI
and , The one-dimensional chemotaxis model: global existence and asymptotic profile. Math. Methods Appl. Sci. 27 (2004) 1783–1801. | MR | Zbl | DOI
, From 1970 util present: the Keller-Segel model in chemotaxis and its consequences I. Jahresber. DMV 105, 2003 (1970) 103–165. | MR | Zbl
and , Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26 (1970) 399–415. | MR | Zbl | DOI
and , Model for chemotaxis. J. Theor. Biol. 30 (1971) 225–234. | Zbl | DOI
, Semigroup Methods for Evolution Equations on Networks. Springer (2014). | MR | Zbl | DOI
and , Full discrete approximations by Galerkin method for chemotaxis growth model. Nonlinear Anal. 47 (2001) 6097–6107. | MR | Zbl | DOI
and , Finite dimensional attractor for one-dimensional Keller–Segel equations, Funkc. Ekvacioj Ser I 44 (2001) 441–469. | MR | Zbl
, -matrix characterizations. I. Nonsingular -matrices. Linear Algebra Appl. 18 (1977) 175–188. | MR | Zbl | DOI
, Nonlinear partial differential equations with applications, second edition. In: Vol. 153 of International Series of Numerical Mathematics. Birkhäuser/Springer Basel AG, Basel (2013). | MR | Zbl
, Error analysis of a conservative finite-element approximation for the Keller-Segel system of chemotaxis. Commun. Pure Appl. Anal. 11 (2012) 339–364. | MR | Zbl | DOI
, , , and , A positivity-preserving finite element method for chemotaxis problems in 3D. J. Comput. Appl. Math. 239 (2013) 290–303. | MR | Zbl | DOI
, Galerkin finite element methods for parabolic problems, second edition. In: Vol. 25 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin (2006). | MR | Zbl
, Functional Analysis and Approximation Theory in Numerical Analysis. CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, Philadelphia (1971). | Zbl
, A priori error estimates for Galerkin approximations to parabolic partial differential equations. SIAM J. Numer. Anal. 10 (1973) 723–759. | MR | Zbl | DOI
Cité par Sources :





