Up-wind difference approximation and singularity formation for a slow erosion model
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 2, pp. 465-492.

We consider a model for a granular flow in the slow erosion limit introduced in [31]. We propose an up-wind numerical scheme for this problem and show that the approximate solutions generated by the scheme converge to the unique entropy solution. Numerical examples are also presented showing the reliability of the scheme. We study also the finite time singularity formation for the model with the singularity tracking method, and we characterize the singularities as shocks in the solution.

DOI : 10.1051/m2an/2019068
Classification : 35A20, 35L65, 65M12, 65M06, 76S05
Mots-clés : Entropy solutions, up-wind scheme, Engquist–Osher scheme, spectral analysis, complex singularities, granular flows
@article{M2AN_2020__54_2_465_0,
     author = {Coclite, Giuseppe Maria and Gargano, Francesco and Sciacca, Vincenzo},
     title = {Up-wind difference approximation and singularity formation for a slow erosion model},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {465--492},
     publisher = {EDP-Sciences},
     volume = {54},
     number = {2},
     year = {2020},
     doi = {10.1051/m2an/2019068},
     mrnumber = {4065142},
     zbl = {1434.76083},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2019068/}
}
TY  - JOUR
AU  - Coclite, Giuseppe Maria
AU  - Gargano, Francesco
AU  - Sciacca, Vincenzo
TI  - Up-wind difference approximation and singularity formation for a slow erosion model
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2020
SP  - 465
EP  - 492
VL  - 54
IS  - 2
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2019068/
DO  - 10.1051/m2an/2019068
LA  - en
ID  - M2AN_2020__54_2_465_0
ER  - 
%0 Journal Article
%A Coclite, Giuseppe Maria
%A Gargano, Francesco
%A Sciacca, Vincenzo
%T Up-wind difference approximation and singularity formation for a slow erosion model
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2020
%P 465-492
%V 54
%N 2
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2019068/
%R 10.1051/m2an/2019068
%G en
%F M2AN_2020__54_2_465_0
Coclite, Giuseppe Maria; Gargano, Francesco; Sciacca, Vincenzo. Up-wind difference approximation and singularity formation for a slow erosion model. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 2, pp. 465-492. doi : 10.1051/m2an/2019068. http://www.numdam.org/articles/10.1051/m2an/2019068/

D. Amadori and W. Shen, Front tracking approximations for slow erosion. Discrete Contin. Dyn. Syst. 32 (2012) 1481–1502. | DOI | MR | Zbl

D. Amadori and W. Shen, An integro-differential conservation law arising in a model of granular flow. J. Hyperbolic Differ. Equ. 9 (2012) 105–131. | DOI | MR | Zbl

G.R. Baker, R.E. Caflisch and M. Siegel, Singularity formation during Rayleigh-Taylor instability. J. Fluid Mech. 252 (1993) 51–75. | DOI | MR | Zbl

R.E. Caflisch, Singularity formation for complex solutions of the 3D incompressible Euler equations. Phys. D 67 (1993) 1–18. | DOI | MR | Zbl

R.E. Caflisch, F. Gargano, M. Sammartino and V. Sciacca, Complex singularities and PDEs. Riv. Mat. Univ. Parma 6 (2015) 69–133. | MR

R.E. Caflisch, F. Gargano, M. Sammartino and V. Sciacca, Regularized Euler- α motion of an infinite array of vortex sheets. Boll. Unione Mat. Ital. 10 (2017) 113–141. | DOI | MR

C. Canuto, M.Y. Hussaini, A. Quarteroni and T.A. Zang, Spectral Methods. Scientific Computation. Springer, Berlin (2007). | DOI | MR | Zbl

G.F. Carrier, M. Krook and C.E. Pearson, Function of a Complex Variable: Theory and Technique. McGraw–Hill, New York (1966). | MR | Zbl

C. Chalons, P. Goatin and L. Villada, High-order numerical schemes for one-dimensional nonlocal conservation laws. SIAM J. Sci. Comput. 40 (2018) A288–A305. | DOI | MR

C. Cichowlas and M.E. Brachet, Evolution of complex singularities in Kida-Pelz and Taylor-Green inviscid flows. Fluid Dyn. Res. 36 (2005) 239–248. | DOI | MR | Zbl

G.M. Coclite and M.M. Coclite, Conservation laws with singular nonlocal sources. J. Differ. Equ. 250 (2011) 3831–3858. | DOI | MR | Zbl

G.M. Coclite and L. Di Ruvo, Well-posedness of the Ostrovsky-Hunter equation under the combined effects of dissipation and short wave dispersion. J. Evol. Equ. 16 (2016) 365–389. | DOI | MR

G.M. Coclite and E. Jannelli, Well-posedness for a slow erosion model. J. Math. Anal. App. 456 (2017) 337–355. | DOI | MR

G.M. Coclite, H. Holden and K.H. Karlsen, Wellposedness for a parabolic-elliptic system. Discrete Contin. Dyn. Syst. 13 (2005) 659–682. | DOI | MR | Zbl

G.M. Coclite, K.H. Karlsen, S. Mishra and N.H. Risebro, Convergence of vanishing viscosity approximations of 2 × 2 triangular systems of multi-dimensional conservation laws. Boll. Unione Mat. Ital. 2 (2009) 275–284. | MR | Zbl

G.M. Coclite, S. Mishra and N.H. Risebro, Convergence of an Engquist-Osher scheme for a multidimensional triangular system of conservation laws. Math. Comput. 79 (2010) 71–94. | DOI | MR | Zbl

G.M. Coclite, F. Gargano and V. Sciacca, Analytic solutions and singularity formation for the peakon b-family equations. Acta Appl. Math. 122 (2012) 419–434. | MR | Zbl

G.M. Coclite, L. Di Ruvo, J. Ernest and S. Mishra, Convergence of vanishing capillarity approximations for scalar conservation laws with discontinuous fluxes. Netw. Heterogen. Media 8 (2013) 969–984. | DOI | MR | Zbl

S.J. Cowley, Computer extension and analytic continuation of Blasius’ expansion for impulsively flow past a circular cylinder. J. Fluid Mech. 135 (1983) 389–405. | DOI | MR | Zbl

M.G. Crandall and A. Majda, Monotone difference approximations for scalar conservation laws. Math. Comput. 34 (1980) 1–21. | DOI | MR | Zbl

G. Della Rocca, M.C. Lombardo, M. Sammartino and V. Sciacca, Singularity tracking for Camassa-Holm and Prandtl’s equations. Appl. Numer. Math. 56 (2006) 1108–1122. | DOI | MR | Zbl

B. Engquist and S. Osher, One sided difference approximations for nonlinear conservation laws. Math. Comput. 36 (1980) 45–75. | MR

R. Eymard, T. Gallouët, M. Ghilani and R. Herbin, Error estimates for the approximate solutions of a nonlinear hyperbolic equation given by finite volume schemes. IMA J. Numer. Anal. 18 (1998) 563–594. | DOI | MR | Zbl

J. Friedrich, O. Kolb and S. Göttlich, A Godunov type scheme for a class of LWR traffic flow models with non-local flux. Netw. Heterogen. Media 13 (2018) 531–547. | DOI | MR

U. Frisch, T. Matsumoto and J. Bec, Singularities of Euler flow? Not out of the blue!. J. Stat. Phys. 113 (2003) 761–781. | DOI | MR | Zbl

F. Gargano, M. Sammartino and V. Sciacca, Singularity formation for Prandtl’s equations. Phys. D 238 (2009) 1975–1991. | DOI | MR | Zbl

F. Gargano, M. Sammartino, V. Sciacca and K.W. Cassel, Analysis of complex singularities in high-Reynolds-number Navier-Stokes solutions. J. Fluid Mech. 747 (2014) 381–421. | DOI | MR

F. Gargano, G. Ponetti, M. Sammartino and V. Sciacca, Complex singularities in KdV solutions. Ricerche Mat. 65 (2016) 479–490. | DOI | MR

F. Gargano, M.M.L. Sammartino and V. Sciacca, Fluid mechanics: Singular behavior of a vortex layer in the zero thickness limit. Rend. Lincei Mat. Appl. 28 (2017) 553–572. | MR

E. Godlewski and P.-A. Raviart, Hyperbolic Systems of Conservation Laws. In: Mathematiques et Applications. Ellipses, Paris (1991). | MR | Zbl

K.P. Hadeler and C. Kuttler, Dynamical models for granular matter. Granular Matter 2 (1999) 9–18. | DOI

K.H. Karlsen and N.H. Risebro, Convergence of finite difference schemes for viscous and inviscid conservation laws with rough coefficients. M2AN 35 (2001) 239–269. | DOI | Numdam | MR | Zbl

C. Klein and K. Roidot, Numerical study of shock formation in the dispersionless Kadomtsev-Petviashvili equation and dispersive regularizations. Phys. D 265 (2013) 1–25. | DOI | MR | Zbl

R. Krasny, A study of singularity formation in a vortex sheet by the point-vortex approximation. J. Fluid Mech. 167 (1986) 65–93. | DOI | MR | Zbl

D. Li and T. Li, Shock formation in a traffic flow model with Arrhenius look-ahead dynamics. Netw. Heterogen. Media 6 (2011) 681–694. | DOI | MR | Zbl

T. Matsumoto, J. Bec and U. Frisch, The analytic structure of 2D Euler flow at short times. Fluid Dyn. Res. 36 (2005) 221–237. | DOI | MR | Zbl

F. Murat, L’injection du cône positif de H - 1 dans W - 1 q est compacte pour tout q < 2  . J. Math. Pures Appl. 60 (1981) 309–322. | MR | Zbl

W. Pauls, T. Matsumoto, U. Frisch and J. Bec, Nature of complex singularities for the 2D Euler equation. Phys. D 219 (2006) 40–59. | DOI | MR | Zbl

T. Rehman, G. Gambino and S.R. Choudhury, Smooth and non-smooth traveling wave solutions of some generalized camassa-holm equations. Commun. Nonlinear Sci. Numer. Simul. 19 (2014) 1746–1769. | DOI | MR

M.J. Shelley, A study of singularity formation in vortex–sheet motion by a spectrally accurate vortex method. J. Fluid. Mech. 244 (1992) 493–526. | DOI | MR | Zbl

W. Shen and T. Zhang, Erosion profile by a global model for granular flow. Arch. Ration. Mech. Anal. 204 (2012) 837–879. | DOI | MR | Zbl

S.-I. Sohn, Singularity formation and nonlinear evolution of a viscous vortex sheet model. Phys. Fluids 25 (2013) 014106. | DOI

C. Sulem, P.-L. Sulem and H. Frisch, Tracing complex singularities with spectral methods. J. Comput. Phys. 50 (1983) 138–161. | DOI | MR | Zbl

L. Tartar, Compensated compactness and applications to partial differential equations. In: Vol. IV of Nonlinear Analysis and Mechanics: Heriot–Watt Symposium. Vol. 39 of Res. Notes in Math. Pitman, Boston, MA-London (1979) 136–212. | MR | Zbl

Cité par Sources :