Numerical approximation and fast evaluation of the overdamped generalized Langevin equation with fractional noise
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 2, pp. 431-463.

The generalized Langevin equation (GLE) is a stochastic integro-differential equation that has been used to describe the movement of microparticles with sub-diffusion phenomenon. It has been proved that with fractional Gaussian noise (fGn) mostly considered by biologists, the overdamped Generalized Langevin equation satisfying fluctuation dissipation theorem can be written as a fractional stochastic differential equation (FSDE). In this work, we present both a direct and a fast algorithm respectively for this FSDE model in order to numerically study ergodicity. The strong orders of convergence are proven for both schemes, where the role of the memory effects can be clearly observed. We verify the convergence theorems using linear forces, and then verify the convergence to Gibbs measure algebraically for the double well potentials in both 1D and 2D setups. Our work is new in numerical analysis of FSDEs and provides a useful tool for studying ergodicity. The idea can also be used for other stochastic models involving memory.

DOI : 10.1051/m2an/2019067
Classification : 65C20, 60H35
Mots-clés : Generalized Langevin equation, fractional Brownian motion, fractional stochastic differential equations, fast algorithm, strong convergence
@article{M2AN_2020__54_2_431_0,
     author = {Fang, Di and Li, Lei},
     title = {Numerical approximation and fast evaluation of the overdamped generalized {Langevin} equation with fractional noise},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {431--463},
     publisher = {EDP-Sciences},
     volume = {54},
     number = {2},
     year = {2020},
     doi = {10.1051/m2an/2019067},
     mrnumber = {4065143},
     zbl = {07201590},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2019067/}
}
TY  - JOUR
AU  - Fang, Di
AU  - Li, Lei
TI  - Numerical approximation and fast evaluation of the overdamped generalized Langevin equation with fractional noise
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2020
SP  - 431
EP  - 463
VL  - 54
IS  - 2
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2019067/
DO  - 10.1051/m2an/2019067
LA  - en
ID  - M2AN_2020__54_2_431_0
ER  - 
%0 Journal Article
%A Fang, Di
%A Li, Lei
%T Numerical approximation and fast evaluation of the overdamped generalized Langevin equation with fractional noise
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2020
%P 431-463
%V 54
%N 2
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2019067/
%R 10.1051/m2an/2019067
%G en
%F M2AN_2020__54_2_431_0
Fang, Di; Li, Lei. Numerical approximation and fast evaluation of the overdamped generalized Langevin equation with fractional noise. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 2, pp. 431-463. doi : 10.1051/m2an/2019067. http://www.numdam.org/articles/10.1051/m2an/2019067/

[1] B. Alpert, L. Greengard and T. Hagstrom, Rapid evaluation of nonreflecting boundary kernels for time-domain wave propagation. SIAM J. Numer. Anal. 37 (2000) 1138–1164. | DOI | MR | Zbl

[2] G. Beylkin and L. Monzón, On approximation of functions by exponential sums. Appl. Comput. Harmon. Anal. 19 (2005) 17–48. | DOI | MR | Zbl

[3] G. Beylkin and L. Monzón, Approximation by exponential sums revisited. Appl. Comput. Harmon. Anal. 28 (2010) 131–149. | DOI | MR | Zbl

[4] S. Burov and E. Barkai, Critical exponent of the fractional langevin equation. Phys. Rev. Lett. 100 (2008) 070601. | DOI

[5] S. Burov and E. Barkai, Fractional langevin equation: overdamped, underdamped, and critical behaviors. Phys. Rev. E 78 (2008) 031112. | DOI | MR

[6] H.B. Callen and T.A. Welton, Irreversibility and generalized noise. Phys. Rev. 83 (1951) 34. | DOI | MR | Zbl

[7] W. Chu and X. Li, The mori-zwanzig formalism for the derivation of a fluctuating heat conduction model from molecular dynamics, Preprint (2017). | arXiv | MR

[8] H. Ding, A high-order numerical algorithm for two-dimensional time-space tempered fractional diffusion-wave equation. Appl. Numer. Math. 135 (2019) 30–46. | DOI | MR

[9] H. Ding and C. Li, A high-order algorithm for time-Caputo-tempered partial differential equation with Riesz derivatives in two spatial dimensions. J. Sci. Comput. 80 (2019) 81–109. | DOI | MR

[10] G. Drazer and D.H. Zanette, Experimental evidence of power-law trapping-time distributions in porous media. Phys. Rev. E 60 (1999) 5858. | DOI

[11] T.E. Duncan, Y. Hu and B. Pasik-Duncan, Stochastic calculus for fractional Brownian motion. I. Theory. SIAM J. Control Optim. 38 (2000) 582–612. | DOI | MR | Zbl

[12] B.U. Felderhof, On the derivation of the fluctuation-dissipation theorem. J. Phys. A 11 (1978) 921–927. | DOI | MR

[13] Y. Feng, L. Li, J.-G. Liu and X. Xu, Continuous and discrete one dimensional autonomous fractional ODEs. Discrete Contin. Dyn. Syst. Ser. B 23 (2018) 3109–3135. | MR

[14] R. Gorenflo and F. Mainardi, Fractional calculus: integral and differential equations of fractional order. In: Mathematical Physics. Springer Verlag, New York (1997) 223–276. | MR

[15] P. Guo, C. Zeng, C. Li and Y.Q. Chen, Numerics for the fractional Langevin equation driven by the fractional Brownian motion. Fract. Calc. Appl. Anal. 16 (2013) 123–141. | DOI | MR

[16] C. Hijón, P. Español, E. Vanden-Eijnden and R. Delgado-Buscalioni, Mori-Zwanzig formalism as a practical computational tool. Faraday Discuss. 144 (2010) 301–322. | DOI

[17] S. Jiang and L. Greengard, Efficient representation of nonreflecting boundary conditions for the time-dependent Schrödinger equation in two dimensions. Comm. Pure Appl. Math. 61 (2008) 261–288. | DOI | MR | Zbl

[18] S. Jiang, L. Greengard and S. Wang, Efficient sum-of-exponentials approximations for the heat kernel and their applications. Adv. Comput. Math. 41 (2015) 529–551. | DOI | MR

[19] S. Jiang, J. Zhang, Q. Zhang and Z. Zhang, Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations. Commun. Comput. Phys. 21 (2017) 650–678. | DOI | MR

[20] Y. Kantor and M. Kardar, Anomalous dynamics of forced translocation. Phys. Rev. E 69 (2004) 021806. | DOI

[21] A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and applications of fractional differential equations. In: Vol. 204 of North-Holland Mathematics Studies. Elsevier Science B.V, Amsterdam (2006). | MR | Zbl

[22] V. Kobelev and E. Romanov, Fractional langevin equation to describe anomalous diffusion. Prog. Theor. Phys., Suppl. 139 (2000) 470–476. | DOI

[23] S.C. Kou and X.S. Xie, Generalized langevin equation with fractional gaussian noise: subdiffusion within a single protein molecule. Phys. Rev. Lett. 93 (2004) 180603. | DOI

[24] P.M. Krasilnikov, Two-dimensional model of a double-well potential: proton transfer upon hydrogen bond deformation. Biophysics 59 (2014) 189–198. | DOI

[25] R. Kubo, The fluctuation-dissipation theorem. Rep. Prog. Phys. 29 (1966) 255. | DOI | Zbl

[26] B. Leimkuhler and M. Sachs, Ergodic properties of quasi-Markovian generalized Langevin equations with configuration dependent noise and non-conservative force. Preprint (2018). | arXiv | MR

[27] J.-R. Li, A fast time stepping method for evaluating fractional integrals. SIAM J. Sci. Comput. 31 (2009/2010) 4696–4714. | DOI | MR | Zbl

[28] L. Li and J.-G. Liu, A generalized definition of Caputo derivatives and its application to fractional ODEs. SIAM J. Math. Anal. 50 (2018) 2867–2900. | DOI | MR

[29] X. Li and C. Xu, A space-time spectral method for the time fractional diffusion equation. SIAM J. Numer. Anal. 47 (2009) 2108–2131. | DOI | MR | Zbl

[30] Z. Li, X. Bian, X. Li and G.E. Karniadakis, Incorporation of memory effects in coarse-grained modeling via the Mori-Zwanzig formalism. J. Chem. Phys. 143 (2015) 243128. | DOI

[31] Z. Li, H.S. Lee, E. Darve and G.E. Karniadakis, Computing the non-Markovian coarse-grained interactions derived from the Mori-Zwanzig formalism in molecular systems: application to polymer melts. J. Chem. Phys. 146 (2017) 014104. | DOI

[32] L. Li, J.-G. Liu and J. Lu, Fractional stochastic differential equations satisfying fluctuation-dissipation theorem and J. Stat. Phys. 169 (2017) 316–339. | DOI | MR

[33] Y. Lin and C. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225 (2007) 1533–1552. | DOI | MR | Zbl

[34] C.-K. Lin, H.-C. Chang and S.H. Lin, Symmetric double-well potential model and its application to vibronic spectra: studies of inversion modes of ammonia and nitrogen-vacancy defect centers in diamond. J. Phys. Chem. A 111 (2007) 9347–9354. | DOI

[35] H.P. Lu, L. Xun and X.S. Xie, Single-molecule enzymatic dynamics. Science 282 (1998) 1877–1882. | DOI

[36] B.B. Mandelbrot and J.W. Van Ness, Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10 (1968) 422–437. | DOI | MR | Zbl

[37] Z. Mao, S. Chen and J. Shen, Efficient and accurate spectral method using generalized Jacobi functions for solving Riesz fractional differential equations. Appl. Numer. Math. 106 (2016) 165–181. | DOI | MR

[38] U. Marconi, A. Puglisi, L. Rondoni and A. Vulpiani, Fluctuation–dissipation: response theory in statistical physics. Phys. Rep. 461 (2008) 111–195. | DOI

[39] W. Mclean, Exponential Sum Approximations for t - β . Springer, Cham, 2018, 911–930. | MR

[40] R. Metzler and J. Klafter, The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A Math. Gen. 37 (2004) R161. | DOI | MR | Zbl

[41] R. Metzler and J. Klafter, When translocation dynamics becomes anomalous. Biophys. J. 85 (2003) 2776. | DOI

[42] H. Mori, A continued-fraction representation of the time-correlation functions. Prog. Theoret. Phys. 34 (1965) 399–416. | DOI | MR

[43] H. Mori, Transport, collective motion, and brownian motion. Prog. Theor. Phys. 33 (1965) 423–455. | DOI | Zbl

[44] R.H. Nochetto, E. Otárola and A.J. Salgado, A PDE approach to space-time fractional parabolic problems. SIAM J. Numer. Anal. 54 (2016) 848–873. | DOI | MR

[45] D. Nualart, Fractional Brownian motion: stochastic calculus and applications. In: Vol. III of International Congress of Mathematicians. Eur. Math. Soc, Zürich, (2006) 1541–1562. | MR | Zbl

[46] H. Qian, G.M. Raymond and J.B. Bassingthwaighte, On two-dimensional fractional Brownian motion and fractional Brownian random field. J. Phys. A Math. Gen. 31 (1998) L527. | DOI | MR | Zbl

[47] S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Yverdon Publishers (1993). | MR | Zbl

[48] J.C. Sankey, C. Yang, B.M. Zwickl, A.M. Jayich and J.G.E. Harris, Strong and tunable nonlinear optomechanical coupling in a low-loss system. Nat. Phys. 6 (2010) 707. | DOI

[49] G.J. Schütz, H. Schindler and T. Schmidt, Single-molecule microscopy on model membranes reveals anomalous diffusion. Biophys. J. 73 (1997) 1073–1080. | DOI

[50] P. Schwille, J. Korlach and W.W. Webb, Fluorescence correlation spectroscopy with single-molecule sensitivity on cell and model membranes. Cytometry A 36 (1999) 176–182. | DOI

[51] C. Sheng and J. Shen, A space-time Petrov-Galerkin spectral method for time fractional diffusion equation. Numer. Math. Theory Methods Appl. 11 (2018) 854–876. | DOI | MR | Zbl

[52] G. Shevchenko, Fractional Brownian motion in a nutshell. In: Vol. 36 of International Journal of Modern Physics: Conference Series. World Scientific (2015) 1560002. | MR | Zbl

[53] A. Taloni, A. Chechkin and J. Klafter, Generalized elastic model yields a fractional langevin equation description. Phys. Rev. Lett. 104 (2010) 160602. | DOI

[54] I.M. Tolic’-Nørrelykke, E.-L. Munteanu, G. Thon, L. Oddershede and K. Berg-Sørensen, Anomalous diffusion in living yeast cells. Phys. Rev. Lett. 93 (2004) 078102. | DOI

[55] M. Topaler and N. Makri, Quantum rates for a double well coupled to a dissipative bath: accurate path integral results and comparison with approximate theories. J. Chem. Phys. 101 (1994) 7500–7519. | DOI

[56] D. Venturi, H. Cho and G.E. Karniadakis, Mori–Zwanzig approach to uncertainty quantification. Vols. 1–3 of Handbook of Uncertainty Quantification. Springer, Cham (2017) 1037–1073. | DOI | MR

[57] M. Weiss, H. Hashimoto and T. Nilsson, Anomalous protein diffusion in living cells as seen by fluorescence correlation spectroscopy. Biophys. J. 84 (2003) 4043–4052. | DOI

[58] M. Weiss, M. Elsner, F. Kartberg and T. Nilsson, Anomalous subdiffusion is a measure for cytoplasmic crowding in living cells. Biophys. J. 87 (2004) 3518–3524. | DOI

[59] Y. Yan, Z.-Z. Sun and J. Zhang, Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations: a second-order scheme. Commun. Comput. Phys. 22 (2017) 1028–1048. | DOI | MR | Zbl

[60] H. Yang, G. Luo, P. Karnchanaphanurach, T.-M. Louie, I. Rech, S. Cova, L. Xun and X.S. Xie, Protein conformational dynamics probed by single-molecule electron transfer. Science 302 (2003) 262–266. | DOI

[61] B. Yuttanan and M. Razzaghi, Legendre wavelets approach for numerical solutions of distributed order fractional differential equations. Appl. Math. Model. 70 (2019) 350–364. | DOI | MR | Zbl

[62] J. Zhang, D. Li and X. Antoine, Efficient numerical computation of time-fractional nonlinear Schrödinger equations in unbounded domain. Commun. Comput. Phys. 25 (2019) 218–243. | DOI | MR | Zbl

[63] R. Zwanzig, Nonlinear generalized Langevin equations. J. Stat. Phys. 9 (1973) 215–220. | DOI

Cité par Sources :