In this paper we study numerical approximations of the evolution problem governed by the nonlocal p-Laplacian operator with a given kernel and homogeneous Neumann boundary conditions. More precisely, we consider discretized versions on inhomogeneous random graph sequences, establish their continuum limits and provide error bounds with nonasymptotic rate of convergence of solutions of the discrete problems to their continuum counterparts as the number of vertices grows. Our bounds reveal the role of the different parameters that come into play, and in particular that of p and of the geometry/regularity of the initial data and the kernel.
Mots-clés : Nonlocal diffusion, $$-Laplacian, inhomogeneous random graphs, graph limits, graphon, numerical approximation
@article{M2AN_2020__54_2_565_0, author = {Hafiene, Yosra and Fadili, Jalal M. and Chesneau, Christophe and Elmoataz, Abderrahim}, title = {Continuum limit of the nonlocal $p${-Laplacian} evolution problem on random inhomogeneous graphs}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {565--589}, publisher = {EDP-Sciences}, volume = {54}, number = {2}, year = {2020}, doi = {10.1051/m2an/2019066}, mrnumber = {4068304}, zbl = {1442.65212}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2019066/} }
TY - JOUR AU - Hafiene, Yosra AU - Fadili, Jalal M. AU - Chesneau, Christophe AU - Elmoataz, Abderrahim TI - Continuum limit of the nonlocal $p$-Laplacian evolution problem on random inhomogeneous graphs JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2020 SP - 565 EP - 589 VL - 54 IS - 2 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2019066/ DO - 10.1051/m2an/2019066 LA - en ID - M2AN_2020__54_2_565_0 ER -
%0 Journal Article %A Hafiene, Yosra %A Fadili, Jalal M. %A Chesneau, Christophe %A Elmoataz, Abderrahim %T Continuum limit of the nonlocal $p$-Laplacian evolution problem on random inhomogeneous graphs %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2020 %P 565-589 %V 54 %N 2 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2019066/ %R 10.1051/m2an/2019066 %G en %F M2AN_2020__54_2_565_0
Hafiene, Yosra; Fadili, Jalal M.; Chesneau, Christophe; Elmoataz, Abderrahim. Continuum limit of the nonlocal $p$-Laplacian evolution problem on random inhomogeneous graphs. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 2, pp. 565-589. doi : 10.1051/m2an/2019066. http://www.numdam.org/articles/10.1051/m2an/2019066/
[1] A nonlocal -laplacian evolution equation with neumann boundary conditions. J. Math. Pures Appl. 90 (2008) 201–227. | DOI | MR | Zbl
, , and ,[2] Nonlocal diffusion problems. In: Vol. 165 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (2010). | MR | Zbl
, , and ,[3] Metrics for sparse graphs, edited by , and . In: Surveys in Combinatorics 2009. London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge (2009) 211–288. | DOI | MR | Zbl
and ,[4] Sparse graphs: metrics and random models. Random Struct. Algorithms 39 (2011) 1–38. | DOI | MR | Zbl
and ,[5] The phase transition in inhomogeneous random graphs. Random Struct. Algorithms 31 (2007) 3–122. | DOI | MR | Zbl
, and ,[6] Convergent sequences of dense graphs I: Subgraph frequencies, metric properties and testing. Adv. Math. 219 (2008) 1801–1851. | DOI | MR | Zbl
, , , and ,[7] Limits of randomly grown graph sequences. Eur. J. Comb. 32 (2011) 985–999. | DOI | MR | Zbl
, , , and ,[8] Neighborhood filters and PDEs. Numer. Math. 105 (2006) 1–34. | DOI | MR | Zbl
, and ,[9] Constructive approximation. In: Vol. 303 of Grundlehren der Mathematischen. Springer-Verlag, Berlin Heidelberg (1993). | MR | Zbl
and ,[10] Non-local morphological pdes and -laplacian equation on graphs with pplications in image processing and machine learning. IEEE J. Sel. Top. Signal Process. 6 (2012) 764–779. | DOI
, and ,[11] On the -laplacian and -laplacian on graphs with applications in image and data processing. SIAM J. Imaging Sci. 8 (2015) 2412–2451. | DOI | MR | Zbl
, and ,[12] On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci. 5 (1960) 17–61. | MR | Zbl
and ,[13] Partial Differential Equations. American Mathematical Society, Providence, RI (2010). | MR | Zbl
,[14] Random graphs. Ann. Math. Stat. 30 (1959) 1141–1144. | DOI | MR | Zbl
,[15] Nonlocal linear image regularization and supervised segmentation. Multiscale Model. Simul. 6 (2007) 595–630. | DOI | MR | Zbl
and ,[16] Nonlocal operators with applications to image processing. Multiscale Model. Simul. 7 (2009) 1005–1028. | DOI | MR | Zbl
and ,[17] Nonlocal -laplacian evolution problems on graphs. SIAM J. Numer. Anal. 56 (2018) 1064–1090. | DOI | MR | Zbl
, and ,[18] The exact constant in the Rosenthal inequality for random variables with mean zero. Theory Probab. App. 46 (2002) 127–132. | DOI | MR | Zbl
and ,[19] The semilinear heat equation on sparse random graphs. SIAM J. Math. Anal. 49 (2017) 1333–1355. | DOI | MR | Zbl
and ,[20] Deblurring and denoising of images by nonlocal functionals. Multiscale Model. Simul. 4 (2005) 1091–1115. | DOI | MR | Zbl
, and ,[21] Large Networks and Graph Limits. American Mathematical Society 60 (2012). | MR | Zbl
,[22] Limits of dense graph sequences. J. Comb. Theory Ser. B 96 (2006) 933–957. | DOI | MR | Zbl
and ,[23] Concentration inequalities and model selection. In: Vol. 1896 of Ecole d’Eté de Probabilités de Saint-Flour XXXIII – 2003. Springer Verlag, New York, NY (2007). | MR | Zbl
,[24] The nonlinear heat equation on dense graphs. SIAM J. Math. Anal. 46 (2014) 2743–2766. | DOI | MR | Zbl
,[25] The nonlinear heat equation on -random graphs. Arch. Ration. Mech. Anal. 212 (2014) 781–803. | DOI | MR | Zbl
,[26] The continuum limit of the kuramoto model on sparse random graphs. Preprint (2018). | arXiv | MR | Zbl
,[27] Approximate Distributions of Order Statistics with Applications to Nonparametric Statistics. Springer-Verlag, New York, NY (1989). | DOI | MR | Zbl
,Cité par Sources :