Continuum limit of the nonlocal p -Laplacian evolution problem on random inhomogeneous graphs
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 2, pp. 565-589.

In this paper we study numerical approximations of the evolution problem governed by the nonlocal p-Laplacian operator with a given kernel and homogeneous Neumann boundary conditions. More precisely, we consider discretized versions on inhomogeneous random graph sequences, establish their continuum limits and provide error bounds with nonasymptotic rate of convergence of solutions of the discrete problems to their continuum counterparts as the number of vertices grows. Our bounds reveal the role of the different parameters that come into play, and in particular that of p and of the geometry/regularity of the initial data and the kernel.

DOI : 10.1051/m2an/2019066
Classification : 35A35, 65N12, 65N15, 41A17, 05C80
Mots-clés : Nonlocal diffusion, $$-Laplacian, inhomogeneous random graphs, graph limits, graphon, numerical approximation
@article{M2AN_2020__54_2_565_0,
     author = {Hafiene, Yosra and Fadili, Jalal M. and Chesneau, Christophe and Elmoataz, Abderrahim},
     title = {Continuum limit of the nonlocal $p${-Laplacian} evolution problem on random inhomogeneous graphs},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {565--589},
     publisher = {EDP-Sciences},
     volume = {54},
     number = {2},
     year = {2020},
     doi = {10.1051/m2an/2019066},
     mrnumber = {4068304},
     zbl = {1442.65212},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2019066/}
}
TY  - JOUR
AU  - Hafiene, Yosra
AU  - Fadili, Jalal M.
AU  - Chesneau, Christophe
AU  - Elmoataz, Abderrahim
TI  - Continuum limit of the nonlocal $p$-Laplacian evolution problem on random inhomogeneous graphs
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2020
SP  - 565
EP  - 589
VL  - 54
IS  - 2
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2019066/
DO  - 10.1051/m2an/2019066
LA  - en
ID  - M2AN_2020__54_2_565_0
ER  - 
%0 Journal Article
%A Hafiene, Yosra
%A Fadili, Jalal M.
%A Chesneau, Christophe
%A Elmoataz, Abderrahim
%T Continuum limit of the nonlocal $p$-Laplacian evolution problem on random inhomogeneous graphs
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2020
%P 565-589
%V 54
%N 2
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2019066/
%R 10.1051/m2an/2019066
%G en
%F M2AN_2020__54_2_565_0
Hafiene, Yosra; Fadili, Jalal M.; Chesneau, Christophe; Elmoataz, Abderrahim. Continuum limit of the nonlocal $p$-Laplacian evolution problem on random inhomogeneous graphs. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 2, pp. 565-589. doi : 10.1051/m2an/2019066. http://www.numdam.org/articles/10.1051/m2an/2019066/

[1] F. Andreu, J. Mazón, J. Rossi and J. Toledo, A nonlocal p -laplacian evolution equation with neumann boundary conditions. J. Math. Pures Appl. 90 (2008) 201–227. | DOI | MR | Zbl

[2] F. Andreu-Vaillo, J.M. Mazón, J.D. Rossi and J.J. Toledo-Melero, Nonlocal diffusion problems. In: Vol. 165 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (2010). | MR | Zbl

[3] B. Bollobás and O. Riordan, Metrics for sparse graphs, edited by S. Huczynska, J.D. Mitchell and C.M.E. Roney-Dougal. In: Surveys in Combinatorics 2009. London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge (2009) 211–288. | DOI | MR | Zbl

[4] B. Bollobás and O. Riordan, Sparse graphs: metrics and random models. Random Struct. Algorithms 39 (2011) 1–38. | DOI | MR | Zbl

[5] B. Bollobás, S. Janson and O. Riordan, The phase transition in inhomogeneous random graphs. Random Struct. Algorithms 31 (2007) 3–122. | DOI | MR | Zbl

[6] C. Borgs, J. Chayes, L. Lovász, V. Sós and K. Vesztergombi, Convergent sequences of dense graphs I: Subgraph frequencies, metric properties and testing. Adv. Math. 219 (2008) 1801–1851. | DOI | MR | Zbl

[7] C. Borgs, J. Chayes, L. Lovász, V. Sós and K. Vesztergombi, Limits of randomly grown graph sequences. Eur. J. Comb. 32 (2011) 985–999. | DOI | MR | Zbl

[8] A. Buades, B. Coll and J.-M. Morel, Neighborhood filters and PDEs. Numer. Math. 105 (2006) 1–34. | DOI | MR | Zbl

[9] R.A. Devore and G.G. Lorentz, Constructive approximation. In: Vol. 303 of Grundlehren der Mathematischen. Springer-Verlag, Berlin Heidelberg (1993). | MR | Zbl

[10] A. Elmoataz, X. Desquesnes and O. Lezoray, Non-local morphological pdes and p -laplacian equation on graphs with pplications in image processing and machine learning. IEEE J. Sel. Top. Signal Process. 6 (2012) 764–779. | DOI

[11] A. Elmoataz, M. Toutain and D. Tenbrinck, On the p -laplacian and -laplacian on graphs with applications in image and data processing. SIAM J. Imaging Sci. 8 (2015) 2412–2451. | DOI | MR | Zbl

[12] P. Erdös and A. Rényi, On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci. 5 (1960) 17–61. | MR | Zbl

[13] L.C. Evans, Partial Differential Equations. American Mathematical Society, Providence, RI (2010). | MR | Zbl

[14] E.N. Gilbert, Random graphs. Ann. Math. Stat. 30 (1959) 1141–1144. | DOI | MR | Zbl

[15] G. Gilboa and S. Osher, Nonlocal linear image regularization and supervised segmentation. Multiscale Model. Simul. 6 (2007) 595–630. | DOI | MR | Zbl

[16] G. Gilboa and S. Osher, Nonlocal operators with applications to image processing. Multiscale Model. Simul. 7 (2009) 1005–1028. | DOI | MR | Zbl

[17] Y. Hafiène, J. Fadili and A. Elmoataz, Nonlocal p -laplacian evolution problems on graphs. SIAM J. Numer. Anal. 56 (2018) 1064–1090. | DOI | MR | Zbl

[18] R. Ibragimov and S. Sharakhmetov, The exact constant in the Rosenthal inequality for random variables with mean zero. Theory Probab. App. 46 (2002) 127–132. | DOI | MR | Zbl

[19] D. Kaliuzhnyi-Verbovetskyi and G. Medvedev, The semilinear heat equation on sparse random graphs. SIAM J. Math. Anal. 49 (2017) 1333–1355. | DOI | MR | Zbl

[20] S. Kindermann, S. Osher and P.W. Jones, Deblurring and denoising of images by nonlocal functionals. Multiscale Model. Simul. 4 (2005) 1091–1115. | DOI | MR | Zbl

[21] L. Lovász, Large Networks and Graph Limits. American Mathematical Society 60 (2012). | MR | Zbl

[22] L. Lovász and B. Szegedy, Limits of dense graph sequences. J. Comb. Theory Ser. B 96 (2006) 933–957. | DOI | MR | Zbl

[23] P. Massart, Concentration inequalities and model selection. In: Vol. 1896 of Ecole d’Eté de Probabilités de Saint-Flour XXXIII – 2003. Springer Verlag, New York, NY (2007). | MR | Zbl

[24] G.S. Medvedev, The nonlinear heat equation on dense graphs. SIAM J. Math. Anal. 46 (2014) 2743–2766. | DOI | MR | Zbl

[25] G.S. Medvedev, The nonlinear heat equation on W -random graphs. Arch. Ration. Mech. Anal. 212 (2014) 781–803. | DOI | MR | Zbl

[26] G.S. Medvedev, The continuum limit of the kuramoto model on sparse random graphs. Preprint (2018). | arXiv | MR | Zbl

[27] R.-D. Reiss, Approximate Distributions of Order Statistics with Applications to Nonparametric Statistics. Springer-Verlag, New York, NY (1989). | DOI | MR | Zbl

Cité par Sources :