A new methodology to create valid time-dependent correlation matrices via isospectral flows
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 2, pp. 361-371.

In many areas of finance and of risk management it is interesting to know how to specify time-dependent correlation matrices. In this work we propose a new methodology to create valid time-dependent instantaneous correlation matrices, which we called correlation flows. In our methodology one needs only an initial correlation matrix to create these correlation flows based on isospectral flows. The tendency of the time-dependent matrices can be controlled by requirements. An application example is presented to illustrate our methodology.

DOI : 10.1051/m2an/2019064
Classification : 93A30, 62H20, 62P05
Mots-clés : Time-dependent correlation matrix, isospectral flow, matrix differential equation
@article{M2AN_2020__54_2_361_0,
     author = {Teng, Long and Wu, Xueran and G\"unther, Michael and Ehrhardt, Matthias},
     title = {A new methodology to create valid time-dependent correlation matrices \protect\emph{via} isospectral flows},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {361--371},
     publisher = {EDP-Sciences},
     volume = {54},
     number = {2},
     year = {2020},
     doi = {10.1051/m2an/2019064},
     mrnumber = {4062756},
     zbl = {1441.91095},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2019064/}
}
TY  - JOUR
AU  - Teng, Long
AU  - Wu, Xueran
AU  - Günther, Michael
AU  - Ehrhardt, Matthias
TI  - A new methodology to create valid time-dependent correlation matrices via isospectral flows
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2020
SP  - 361
EP  - 371
VL  - 54
IS  - 2
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2019064/
DO  - 10.1051/m2an/2019064
LA  - en
ID  - M2AN_2020__54_2_361_0
ER  - 
%0 Journal Article
%A Teng, Long
%A Wu, Xueran
%A Günther, Michael
%A Ehrhardt, Matthias
%T A new methodology to create valid time-dependent correlation matrices via isospectral flows
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2020
%P 361-371
%V 54
%N 2
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2019064/
%R 10.1051/m2an/2019064
%G en
%F M2AN_2020__54_2_361_0
Teng, Long; Wu, Xueran; Günther, Michael; Ehrhardt, Matthias. A new methodology to create valid time-dependent correlation matrices via isospectral flows. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 2, pp. 361-371. doi : 10.1051/m2an/2019064. http://www.numdam.org/articles/10.1051/m2an/2019064/

[1] A. Alfonsi, Affine Diffusions and Related Processes: Simulation, Theory and Applications. Springer International Publishing, Switzerland (2015). | MR

[2] G. Ascoli, Remarque sur une communication de Mr. H. Schwerdtfeger. Univ. e. Politec. Torino Rend. Sem. Mat. 11 (1952) 335–336. | MR | Zbl

[3] V. Bhansali and B. Wise, Forecasting portfolio risk in normal and stressed market. J. Risk 4 (2001) 91–106. | DOI

[4] S. Boyd and L. Xiao, Least-squares covariance matrix adjustment. SIAM J. Matrix Anal. Appl. 27 (2005) 532–546. | DOI | MR | Zbl

[5] M.T. Chu, Matrix differential equations: a continuous realization process for linear algebra problems. Nonlinear Anal. Theor. Methods Appl. 18 (1992) 1125–1146. | DOI | MR | Zbl

[6] M.L. Curtis, Matrix Groups. Springer-Verlag, New York (1979). | DOI | MR | Zbl

[7] J.W. Dash, Quantitative Finance and Risk Management: A Physicist’ Approach. World Scientific, Singapore (2004). | DOI | MR | Zbl

[8] C. Finger, A methodology for stress correlation. RiskMetrics Monitor Fourth Quarter (1997) 3–11.

[9] E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations. Springer, Berlin Heidelberg (2006). | MR | Zbl

[10] S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces. Academic, New York (1978). | MR | Zbl

[11] N.J. Higham, Computing the nearest correlation matrix – a problem from finance. IMA J. Numer. Anal. 22 (2002) 329–343. | DOI | MR | Zbl

[12] A.N. Kercheval, On Rebonato and Jäckel’s parametrization method for finding nearest correlation matrices. Int. J. Pure Appl. Math. 45 (2008) 383–390. | MR | Zbl

[13] P.H. Kupiec, Stress testing in a value at risk framework. J. Derivatives 6 (1998) 7–24. | DOI

[14] A. León, J.E. Peris, J. Silva and J. Subiza, A note on adjusting correlation matrices. Appl. Math. Finan. 9 (2002) 61–67. | DOI | Zbl

[15] W. Magnus, On the exponential solution of differential equations for a linear operator. Pure Appl. Math. VII (1954) 649–673. | DOI | MR | Zbl

[16] J. Malick, A dual approach to semidefinite least-squares problems. SIAM. J. Matrix Anal. Appl. 26 (2004) 272–284. | DOI | MR | Zbl

[17] J.F.P. Martin, Some results on matrices which commute with their derivatives. SIAM. J. Appl. Math. 15 (1967) 1171–1183. | DOI | MR | Zbl

[18] H. Qi and D. Sun, A quadratically convergent Newton method for computing the nearest correlation matrix. SIAM. J. Matrix Anal. Appl. 28 (2006) 360–385. | DOI | MR | Zbl

[19] H. Qi and D. Sun, Correlation stress testing for value-at-risk: an unconstrained convex optimization approach. J. Derivatives 45 (2010) 427–462. | MR | Zbl

[20] F. Rapisarda, D. Brigo and D. Mercurio, Parameterizing correlations: a geometric interpretation. IMA J. Manag. Math. 18 (2007) 55–73. | MR | Zbl

[21] R. Rebonato and P. Jäckel, The most general methodology to create a valid correlation matrix for risk management and option pricing purposes. J. Risk 2 (2000) 17–27. | DOI

[22] L. Teng, M. Ehrhardt and M. Günther, Option pricing with dynamically correlated stochastic interest rate Acta. Math. Uni. Comenianae LXXXIV (2015) 179–190. | MR | Zbl

[23] L. Teng, M. Ehrhardt and M. Günther, The pricing of quanto options under dynamic correlation. J. Comput. Appl. Math. 275 (2015) 304–310. | DOI | MR | Zbl

[24] L. Teng, M. Ehrhardt and M. Günther, The dynamic correlation model and its application to the Heston model. In: Innovations in Derivatives Markets, edited by K. Glau, Z. Grbac, M. Scherer and R. Zagst. Springer, Cham (2016). | DOI | Zbl

[25] L. Teng, M. Ehrhardt and M. Günther, Modelling stochastic correlation. J. Math. Ind. 6 (2016) 1–18. | MR

[26] L. Teng, M. Ehrhardt and M. Günther, On the Heston model with stochastic correlation. Int. J. Theor. Appl. Finan. 19 (2016) 16500333. | DOI | MR

[27] L. Teng, C. Van Emmerich, M. Ehrhardt and M. Günther, A versatile approach for stochastic correlation using hyperbolic functions. Int. J. Comput. Math. 93 (2016) 524–539. | DOI | MR | Zbl

[28] L. Teng, M. Ehrhardt and M. Günther, Quanto pricing in stochastic correlation models. Int. J. Theor. Appl. Finan. 21 (2018) 1850038. | DOI | MR | Zbl

[29] S. Turkay, E. Epperlein and N. Christofides, Correlation stress testing for value-at-risk. J. Risk 5 (2003) 75–89. | DOI

[30] F. Warner, Foundations of Differential Manifolds and Lie Group. Springer-Verlag, New York (1983). | DOI | MR | Zbl

Cité par Sources :