Conservative discontinuous finite volume and mixed schemes for a new four-field formulation in poroelasticity
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 1, pp. 273-299.

We introduce a numerical method for the approximation of linear poroelasticity equations, representing the interaction between the non-viscous filtration flow of a fluid and the linear mechanical response of a porous medium. In the proposed formulation, the primary variables in the system are the solid displacement, the fluid pressure, the fluid flux, and the total pressure. A discontinuous finite volume method is designed for the approximation of solid displacement using a dual mesh, whereas a mixed approach is employed to approximate fluid flux and the two pressures. We focus on the stationary case and the resulting discrete problem exhibits a double saddle-point structure. Its solvability and stability are established in terms of bounds (and of norms) that do not depend on the modulus of dilation of the solid. We derive optimal error estimates in suitable norms, for all field variables; and we exemplify the convergence and locking-free properties of this scheme through a series of numerical tests.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1051/m2an/2019063
Classification : 65N30, 76S05, 74F10, 65N15
Mots-clés : Biot problem, discontinuous finite volume methods, mixed finite elements, locking-free approximations, conservative schemes, error estimates
@article{M2AN_2020__54_1_273_0,
     author = {Kumar, Sarvesh and Oyarz\'ua, Ricardo and Ruiz-Baier, Ricardo and Sandilya, Ruchi},
     title = {Conservative discontinuous finite volume and mixed schemes for a new four-field formulation in poroelasticity},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {273--299},
     publisher = {EDP-Sciences},
     volume = {54},
     number = {1},
     year = {2020},
     doi = {10.1051/m2an/2019063},
     mrnumber = {4058208},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2019063/}
}
TY  - JOUR
AU  - Kumar, Sarvesh
AU  - Oyarzúa, Ricardo
AU  - Ruiz-Baier, Ricardo
AU  - Sandilya, Ruchi
TI  - Conservative discontinuous finite volume and mixed schemes for a new four-field formulation in poroelasticity
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2020
SP  - 273
EP  - 299
VL  - 54
IS  - 1
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2019063/
DO  - 10.1051/m2an/2019063
LA  - en
ID  - M2AN_2020__54_1_273_0
ER  - 
%0 Journal Article
%A Kumar, Sarvesh
%A Oyarzúa, Ricardo
%A Ruiz-Baier, Ricardo
%A Sandilya, Ruchi
%T Conservative discontinuous finite volume and mixed schemes for a new four-field formulation in poroelasticity
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2020
%P 273-299
%V 54
%N 1
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2019063/
%R 10.1051/m2an/2019063
%G en
%F M2AN_2020__54_1_273_0
Kumar, Sarvesh; Oyarzúa, Ricardo; Ruiz-Baier, Ricardo; Sandilya, Ruchi. Conservative discontinuous finite volume and mixed schemes for a new four-field formulation in poroelasticity. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 1, pp. 273-299. doi : 10.1051/m2an/2019063. http://www.numdam.org/articles/10.1051/m2an/2019063/

[1] F. Aguilar, F.L. Gaspar and C. Rodrigo, Numerical stabilization of Biot’s consolidation model by a perturbation on the flow equation. Int. J. Numer. Methods Eng. 75 (2008) 1282–1300. | DOI | MR

[2] E. Ahmed, F.A. Radu and J.M. Nordbotten, Adaptive poromechanics computations based on a posteriori error estimates for fully mixed formulations of Biot’s consolidation model. Comput. Methods Appl. Mech. Eng. 347 (2019) 264–294. | DOI | MR

[3] I. Ambartsumyan, E. Khattatov, I. Yotov and P. Zunino, A Lagrange multiplier method for a Stokes-Biot fluid-poroelastic structure interaction model. Numer. Math. 140 (2018) 513–553. | DOI | MR

[4] V. Anaya, Z. De Wijn, B. Gómez-Vargas, D. Mora and R. Ruiz-Baier, Rotation-based mixed formulations for an elasticity-poroelasticity interface problem. Submitted preprint (2019). Available from https://www.ci2ma.udec.cl/publicaciones/prepublicaciones/. | MR

[5] V. Anaya, Z. De Wijn, D. Mora and R. Ruiz-Baier, Mixed displacement-rotation-pressure formulations for linear elasticity. Comput. Methods Appl. Mech. Eng. 344 (2019) 71–94. | DOI | MR

[6] D.N. Arnold, An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19 (1982) 742–760. | DOI | MR | Zbl

[7] D.N. Arnold, F. Brezzi, B. Cockburn and L.D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39 (2002) 1749–1779. | DOI | MR | Zbl

[8] R. Asadi, B. Ataie-Ashtiani and C.T. Simmons, Finite volume coupling strategies for the solution of a Biot consolidation model. Comput. Geotech. 55 (2014) 494–505. | DOI

[9] T. Bærland, J.J. Lee, K.-A. Mardal and R. Winther, Weakly imposed symmetry and robust preconditioners for Biot’s consolidation model. Comput. Methods Appl. Math. 17 (2017) 377–396. | DOI | MR

[10] L. Berger, R. Bordas, D. Kay and S. Tavener, Stabilized lowest-order finite element approximation for linear three-field poroelasticity. SIAM J. Sci. Comput. 37 (2015) A2222–A2245. | DOI | MR

[11] L. Berger, R. Bordas, D. Kay and S. Tavener, A stabilized finite element method for finite-strain three-field poroelasticity. Comput. Mech. 60 (2017) 51–68. | DOI | MR

[12] M.A. Biot, Theory of elasticity and consolidation for a porous anisotropic solid. J. Appl. Phys. 26 (1955) 182–185. | DOI | MR | Zbl

[13] D. Boffi, M. Botti and D.A. Di Pietro, A nonconforming high-order method for the Biot problem on general meshes. SIAM J. Sci. Comput. 38 (2016) A1508–A1537. | DOI | MR

[14] D. Boffi, F. Brezzi and M. Fortin, Mixed finite element methods and applications. In: Vol. 44 of Springer Series in Computational Mathematics. Springer (2010). | MR | Zbl

[15] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer Verlag (2010). | MR | Zbl

[16] M. Bukač, I. Yotov and P. Zunino, Dimensional model reduction for flow through fractures in poroelastic media. ESAIM: M2AN 51 (2017) 1429–1471. | Numdam | MR

[17] R. Bürger, S. Kumar and R. Ruiz-Baier, Discontinuous finite volume element discretization for coupled flow-transport problems arising in models of sedimentation. J. Comput. Phys. 299 (2015) 446–471. | DOI | MR

[18] C. Carstensen, N. Nataraj and A.K. Pani, Comparison results and unified analysis for first-order finite volume element methods for a Poisson model problem. IMA J. Numer. Anal. 36 (2016) 1120–1142. | DOI | MR

[19] N. Castelletto, J.A. White and M. Ferronato, Scalable algorithms for three-field mixed finite element coupled poromechanics. J. Comput. Phys. 327 (2016) 894–918. | DOI | MR

[20] D. Chapelle and P. Moireau, General coupling of porous flows and hyperelastic formulations – From thermodynamics principles to energy balance and compatible time schemes. Eur. J. Mech. B/Fluids 46 (2014) 82–96. | DOI | MR | Zbl

[21] Y. Chen, Y. Luo and M. Feng, Analysis of a discontinuous Galerkin method for the Biot’s consolidation problem. Appl. Math. Comput. 219 (2013) 9043–9056. | MR | Zbl

[22] Z. Chen, Y. Xu and Y. Zhang, A second-order hybrid finite volume method for solving the Stokes equation. Appl. Numer. Math. 119 (2017) 213–224. | DOI | MR

[23] Z. De Wijn, R. Oyarzúa and R. Ruiz-Baier, A second-order finite-volume-element scheme for linear poroelasticity. Submitted preprint (2019). Available from https://www.ci2ma.udec.cl/publicaciones/prepublicaciones/.

[24] Q. Deng, V. Ginting, B. Mccaskill and P. Torsu, A locally conservative stabilized continuous Galerkin finite element method for two-phase flow in poroelastic subsurfaces. J. Comput. Phys. 347 (2017) 78–98. | DOI | MR

[25] D. Di Pietro and A. Ern, Mathematical aspects of discontinuous Galerkin methods. In: Vol. 69 of Mathématiques & Applications. Springer, Heidelberg (2012). | DOI | MR | Zbl

[26] Q. Fang and D.A. Boas, Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units. Opt. Express 17 (2009) 20178–20190. | DOI

[27] X. Feng, Z. Ge and Y. Li, Analysis of a multiphysics finite element method for a poroelasticity model. IMA J. Numer. Anal. 38 (2018) 330–359. | DOI | MR

[28] G. Fu, A high-order HDG method for the Biot’s consolidation model. Comput. Math. Appl. 77 (2019) 237–252. | DOI | MR

[29] G.N. Gatica, A Simple Introduction to the Mixed Finite Element Method. Theory and Applications. Springer Briefs in Mathematics. Springer, Cham (2014). | MR | Zbl

[30] C. Geuzaine and J.-F. Remacle, Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Methods Eng. 79(11) (2009) 1309–1331. | DOI | MR | Zbl

[31] V. Girault and P.-A. Raviart, Finite element approximation of the Navier–Stokes equations. In: Vol. 749 of Lecture Notes in Mathematics. Springer-Verlag, Berlin-New York (1979). | DOI | MR | Zbl

[32] V. Girault, M.F. Wheeler, B. Ganis and M.E. Mear, A lubrication fracture model in a poro-elastic medium. Math. Models Methods Appl. Sci. 25 (2015) 587–645. | DOI | MR

[33] Q. Hong and J. Kraus, Parameter-robust stability of classical three-field formulation of Biot’s consolidation model. Electron. Trans. Numer. Anal. 48 (2018) 202–226. | DOI | MR

[34] Q. Hong, J. Kraus, M. Lymbery and F. Philo, Conservative discretizations and parameter-robust preconditioners for Biot and multiple-network flux-based poroelasticity models. Numer. Linear Alg. Appl. 26 (2019) e2242. | DOI | MR

[35] X. Hu, C. Rodrigo, F.J. Gaspar and L.T. Zikatanov, A non-conforming finite element method for the Biot’s consolidation model in poroelasticity. J. Comput. Appl. Math. 310 (2017) 143–154. | DOI | MR

[36] G. Kanschat and B. Rivière, A finite element method with strong mass conservation for Biot’s linear consolidation model. J. Sci. Comput. 77 (2018) 1762–1779. | DOI | MR

[37] S. Kumar and R. Ruiz-Baier, Equal order discontinuous finite volume element methods for the Stokes problem. J. Sci. Comput. 65 (2015) 956–978. | DOI | MR

[38] R. Lazarov and X. Ye, Stabilized discontinuous finite element approximations for Stokes equations. J. Comput. Appl. Math. 198 (2007) 236–252. | DOI | MR | Zbl

[39] J.J. Lee, K.-A. Mardal and R. Winther, Parameter-robust discretization and preconditioning of Biot’s consolidation model. SIAM J. Sci. Comput. 39 (2017) A1–A24. | DOI | MR

[40] J.J. Lee, E. Persanti, K.-A. Mardal and M.E. Rognes, A mixed finite element method for nearly incompressible multiple-network poroelasticity. SIAM J. Sci. Comput. 41 (2019) A722–A747. | DOI | MR

[41] R.W. Lewis and B.A. Schrefler, The Finite Element Method in the Deformation of and Consolidation of Porous Media. Wiley & Sons, Chichester (1987). | Zbl

[42] R. Liu, M.F. Wheeler, C.N. Dawson and R.H. Dean, On a coupled discontinuous/continuous Galerkin framework and an adaptive penalty scheme for poroelasticity problems. Comput. Methods Appl. Mech. Eng. 198 (2009) 3499–3510. | DOI | Zbl

[43] K.-A. Mardal and R. Winther, Preconditioning discretizations of systems of partial differential equations. Numer. Linear Algebra Appl. 18 (2011) 1–40. | DOI | MR | Zbl

[44] M.A. Murad, V. Thomée and A.F.D. Loula, Asymptotic behavior of semi discrete finite-element approximations of Biot’s consolidation problem. SIAM J. Numer. Anal. 33 (1996) 1065–1083. | DOI | MR | Zbl

[45] A. Naumovich, On finite volume discretization of the three-dimensional Biot poroelasticity system in multilayer domains. Comput. Methods Appl. Math. 6 (2006) 306–325. | DOI | MR | Zbl

[46] A. Naumovich and F.J. Gaspar, On a multigrid solver for the three-dimensional Biot poroelasticity system in multilayered domains. Comput. Vis. Sci. 11 (2008) 77–87. | DOI | MR

[47] R. Oyarzúa and R. Ruiz-Baier, Locking-free finite element methods for poroelasticity. SIAM J. Numer. Anal. 54 (2016) 2951–2973. | DOI | MR

[48] R. Penta, D. Ambrosi and R.J. Shipley, Effective governing equations for poroelastic growing media. Q. J. Mech. Appl. Math. 67 (2014) 69–91. | DOI | MR

[49] G.P. Peters and D.W. Smith, Solute transport through a deforming porous medium. Int. J. Numer. Anal. Methods Geomech. 26 (2002) 683–717. | DOI | Zbl

[50] P.J. Phillips and M.F. Wheeler, A coupling of mixed and discontinuous Galerkin finite-element methods for poroelasticity. Comput. Geosci. 12 (2008) 417–435. | DOI | MR | Zbl

[51] M. Radszuweit, H. Engel and M. Bär, An active poroelastic model for mechanochemical patterns in protoplasmic droplets of physarum polycephalum.PLoS One 9 (2014) e99220. | DOI

[52] R. Riedlbeck, D.A. Di Pietro, A. Ern, S. Granet and K. Kazymyrenko, Stress and flux reconstruction in Biot’s poro-elasticity problem with application to a posteriori error analysis. Comput. Math. Appl. 73 (2017) 1593–1610. | DOI | MR | Zbl

[53] B. Rivière, J. Tan and T. Thompson, Error analysis of primal discontinuous Galerkin methods for a mixed formulation of the Biot equations. Comput. Math. Appl. 73 (2017) 666–683. | DOI | MR | Zbl

[54] C. Rodrigo, F.J. Gaspar, X. Hu and L.T. Zikatanov, Stability and monotonicity for some discretizations of the Biot’s consolidation model. Comput. Methods Appl. Mech. Eng. 298 (2016) 183–204. | DOI | MR | Zbl

[55] R. Ruiz-Baier and I. Lunati, Mixed finite element – discontinuous finite volume element discretization of a general class of multicontinuum models. J. Comput. Phys. 322 (2016) 666–688. | DOI | MR | Zbl

[56] R. Sacco, P. Causin, C. Lelli and M.T. Raimondi, A poroelastic mixture model of mechanobiological processes in biomass growth: theory and application to tissue engineering. Meccanica 52 (2017) 3273–3297. | DOI | MR | Zbl

[57] R.E. Showalter, Diffusion in poro-elastic media. J. Math. Anal. Appl. 251 (2000) 310–340. | DOI | MR | Zbl

[58] K.H. Støverud, M. Alnæs, H.P. Langtangen, V. Haughton and K.-A. Mardal, Poro-elastic modeling of Syringomyelia – a systematic study of the effects of pia mater, central canal, median fissure, white and gray matter on pressure wave propagation and fluid movement within the cervical spinal cord. Comput. Methods Biomech. Biomed. Eng. 19 (2016) 686–698. | DOI

[59] M. Sun and H. Rui, A coupling of weak Galerkin and mixed finite element methods for poroelasticity. Comput. Math. Appl. 73 (2017) 804–823. | DOI | MR | Zbl

[60] J.C. Vardakis, D. Chou, B.J. Tully, C.C. Hung, T.H. Lee, P.-H. Tsui and Y. Ventikos, Investigating cerebral oedema using poroelasticity. Med. Eng. Phys. 38 (2016) 48–57. | DOI

[61] A.-T. Vuong, L. Yoshihara and W.A. Wall, A general approach for modeling interacting flow through porous media under finite deformations. Comput. Methods Appl. Mech. Eng. 283 (2015) 1240–1259. | DOI | MR | Zbl

[62] M.F. Wheeler, G. Xue and I. Yotov, Coupling multipoint flux mixed finite element methods with continuous Galerkin methods for poroelasticity. Comput. Geosci. 18 (2014) 57–75. | DOI | MR | Zbl

[63] J.A. White and R.I. Borja, Stabilized low-order finite elements for coupled solid-deformation/fluid-diffusion and their application to fault zone transients. Comput. Methods Appl. Mech. Eng. 197 (2008) 4353–4366. | DOI | Zbl

[64] X. Ye, A discontinuous finite volume method for the Stokes problem. SIAM J. Numer. Anal. 44 (2006) 183–198. | DOI | MR | Zbl

[65] S.-Y. Yi, A Coupling of nonconforming and mixed finite element methods for Biot’s consolidation model. Numer. Methods Part. Diff. Equ. 29 (2013) 1749–1777. | DOI | MR | Zbl

[66] S.-Y. Yi, Convergence analysis of a new mixed finite element method for Biot’s consolidation model. Numer. Methods Part. Diff. Equ. 30 (2014) 1189–1210. | DOI | MR | Zbl

Cité par Sources :