In this paper, we focus on finite volume approximation schemes to solve a non-local material flow model in two space dimensions. Based on the numerical discretisation with dimensional splitting, we prove the convergence of the approximate solutions, where the main difficulty arises in the treatment of the discontinuity occurring in the flux function. In particular, we compare a Roe-type scheme to the well-established Lax–Friedrichs method and provide a numerical study highlighting the benefits of the Roe discretisation. Besides, we also prove the L1-Lipschitz continuous dependence on the initial datum, ensuring the uniqueness of the solution.
Accepté le :
Publié le :
DOI : 10.1051/m2an/2019062
Mots-clés : Non-local conservation laws, material flow, Roe scheme, Lax–Friedrichs scheme
@article{M2AN_2020__54_2_679_0, author = {Rossi, Elena and Wei{\ss}en, Jennifer and Goatin, Paola and G\"ottlich, Simone}, title = {Well-posedness of a non-local model for material flow on conveyor belts}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {679--704}, publisher = {EDP-Sciences}, volume = {54}, number = {2}, year = {2020}, doi = {10.1051/m2an/2019062}, mrnumber = {4074000}, zbl = {1434.65151}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2019062/} }
TY - JOUR AU - Rossi, Elena AU - Weißen, Jennifer AU - Goatin, Paola AU - Göttlich, Simone TI - Well-posedness of a non-local model for material flow on conveyor belts JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2020 SP - 679 EP - 704 VL - 54 IS - 2 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2019062/ DO - 10.1051/m2an/2019062 LA - en ID - M2AN_2020__54_2_679_0 ER -
%0 Journal Article %A Rossi, Elena %A Weißen, Jennifer %A Goatin, Paola %A Göttlich, Simone %T Well-posedness of a non-local model for material flow on conveyor belts %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2020 %P 679-704 %V 54 %N 2 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2019062/ %R 10.1051/m2an/2019062 %G en %F M2AN_2020__54_2_679_0
Rossi, Elena; Weißen, Jennifer; Goatin, Paola; Göttlich, Simone. Well-posedness of a non-local model for material flow on conveyor belts. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 2, pp. 679-704. doi : 10.1051/m2an/2019062. http://www.numdam.org/articles/10.1051/m2an/2019062/
Nonlocal systems of conservation laws in several space dimensions. SIAM J. Numer. Anal. 53 (2015) 963–983. | DOI | MR | Zbl
, and ,On the numerical integration of scalar nonlocal conservation laws. ESAIM: M2AN 49 (2015) 19–37. | DOI | Numdam | MR | Zbl
, and ,Well-posedness of a conservation law with non-local flux arising in traffic flow modeling. Numer. Math. 132 (2016) 217–241. | DOI | MR | Zbl
and ,Stability estimates for non-local scalar conservation laws. Nonlinear Anal. Real World Appl. 45 (2019) 668–687. | DOI | MR | Zbl
, and ,Hyperbolic predators vs. parabolic prey. Commun. Math. Sci. 13 (2015) 369–400. | DOI | MR | Zbl
and ,A class of nonlocal models for pedestrian traffic. Math. Models Methods Appl. Sci. 22 (2012) 1150023 34. | DOI | MR | Zbl
, and ,The method of fractional steps for conservation laws. Numer. Math. 34 (1980) 285–314. | DOI | MR | Zbl
and ,Monotone difference approximations for scalar conservation laws. Math. Comput. 34 (1980) 1–21. | DOI | MR | Zbl
and ,Modeling, simulation and validation of material flow on conveyor belts. Appl. Math. Model. 38 (2014) 3295–3313. | DOI
, , , and ,On the uniqueness and stability of entropy solutions of nonlinear degenerate parabolic equations with rough coefficients. Discrete Contin. Dyn. Syst. 9 (2003) 1081–1104. | DOI | MR | Zbl
and ,Existence, uniqueness and regularity results on nonlocal balance laws. J. Differ. Equ. 263 (2017) 4023–4069. | DOI | MR | Zbl
and ,Existence, uniqueness and regularity of multi-dimensional nonlocal balance laws with damping. J. Math. Anal. Appl. 466 (2018) 18–55. | DOI | MR | Zbl
, and ,First order quasilinear equations with several independent variables. Mat. Sb. (N.S.) 81 (1970) 228–255. | MR | Zbl
,Improved stability estimates for general scalar conservation laws. J. Hyperbolic Differ. Equ. 8 (2011) 727–757. | DOI | MR | Zbl
,Improved stability estimates on general scalar balance laws. Preprint arXiv:1010.5116 (2003).
,Numerical methods for conservation laws. 2nd edition. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, , Basel (1992). | MR | Zbl
,Cité par Sources :