We develop and analyze a model for the interaction of a quasi-Newtonian free fluid with a poroelastic medium. The flow in the fluid region is described by the nonlinear Stokes equations and in the poroelastic medium by the nonlinear quasi-static Biot model. Equilibrium and kinematic conditions are imposed on the interface. We establish existence and uniqueness of a solution to the weak formulation and its semidiscrete continuous-in-time finite element approximation. We present error analysis, complemented by numerical experiments.
Mots-clés : Fluid-poroelastic structure interaction, Stokes–Biot model, fractured poroelastic media, non-Newtonian fluid
@article{M2AN_2019__53_6_1915_0, author = {Ambartsumyan, Ilona and Ervin, Vincent J. and Nguyen, Truong and Yotov, Ivan}, title = {A nonlinear {Stokes{\textendash}Biot} model for the interaction of a {non-Newtonian} fluid with poroelastic media}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1915--1955}, publisher = {EDP-Sciences}, volume = {53}, number = {6}, year = {2019}, doi = {10.1051/m2an/2019061}, mrnumber = {4022710}, zbl = {1431.76120}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2019061/} }
TY - JOUR AU - Ambartsumyan, Ilona AU - Ervin, Vincent J. AU - Nguyen, Truong AU - Yotov, Ivan TI - A nonlinear Stokes–Biot model for the interaction of a non-Newtonian fluid with poroelastic media JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2019 SP - 1915 EP - 1955 VL - 53 IS - 6 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2019061/ DO - 10.1051/m2an/2019061 LA - en ID - M2AN_2019__53_6_1915_0 ER -
%0 Journal Article %A Ambartsumyan, Ilona %A Ervin, Vincent J. %A Nguyen, Truong %A Yotov, Ivan %T A nonlinear Stokes–Biot model for the interaction of a non-Newtonian fluid with poroelastic media %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2019 %P 1915-1955 %V 53 %N 6 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2019061/ %R 10.1051/m2an/2019061 %G en %F M2AN_2019__53_6_1915_0
Ambartsumyan, Ilona; Ervin, Vincent J.; Nguyen, Truong; Yotov, Ivan. A nonlinear Stokes–Biot model for the interaction of a non-Newtonian fluid with poroelastic media. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 6, pp. 1915-1955. doi : 10.1051/m2an/2019061. http://www.numdam.org/articles/10.1051/m2an/2019061/
[1] Error estimates for Raviart-Thomas interpolation of any order on anisotropic tetrahedra. Math. Comput. 80 (2011) 141–163. | DOI | MR | Zbl
, , and ,[2] A Lagrange multiplier method for a Stokes-Biot fluid-poroelastic structure interaction model. Numer. Math. 140 (2018) 513–553. | DOI | MR | Zbl
, , and ,[3] Coupling Biot and Navier-Stokes equations for modelling fluid-poroelastic media interaction. J. Comput. Phys. 228 (2009) 7986–8014. | DOI | MR | Zbl
, and ,[4] Boundary conditions at a naturally impermeable wall. J. Fluid. Mech. 30 (1967) 197–207. | DOI
and ,[5] General theory of three-dimensional consolidation. J. Appl. Phys. 12 (1941) 155–164. | DOI | JFM
,[6] Vol. 1 of Dynamics of Polymeric Liquids. Wiley New York (1977).
, , and , In:[7] Analysis of finite element approximation of evolution problems in mixed form. SIAM J. Numer. Anal. 42 (2004) 1502–1526. | DOI | MR | Zbl
and ,[8] Mixed finite element methods and applications. In: Vol. 44 of Springer Series in Computational Mathematics. Springer, Heidelberg (2013). | MR | Zbl
, and ,[9] Mixed Finite Elements, Compatibility Conditions, and Applications. Springer (2008). | MR
, , , , and ,[10] Partitioning strategies for the interaction of a fluid with a poroelastic material based on a Nitsche’s coupling approach. Comput. Methods Appl. Mech. Eng. 292 (2015) 138–170. | DOI | MR | Zbl
, , and ,[11] An operator splitting approach for the interaction between a fluid and a multilayered poroelastic structure. Numer. Methods Partial Differ. Equ. 31 (2015) 1054–1100. | DOI | MR | Zbl
, and ,[12] Dimensional model reduction for flow through fractures in poroelastic media. ESAIM: M2AN 51 (2017) 1429–1471. | Numdam | MR | Zbl
, and ,[13] A fully-mixed finite element method for the Navier–Stokes/Darcy coupled problem with nonlinear viscosity. J. Numer. Math. 25 (2017) 55–88. | DOI | MR | Zbl
, , and ,[14] Analysis of the coupled Navier–Stokes/Biot problem. J. Math. Anal. Appl. 456 (2017) 970–991. | DOI | MR | Zbl
,[15] Optimization-based decoupling algorithms for a fluid-poroelastic system. In: Topics in Numerical Partial Differential Equations and Scientific Computing. Vol. 160 of IMA Vol. Math. Appl. Springer, New York (2016) 79–98. | DOI | MR | Zbl
, , , and ,[16] Numerical approximation of generalized Newtonian fluids using Powell–Sabin–Heindl elements: I. Theoretical estimates. Int. J. Numer. Methods Fluids 41 (2003) 1085–1118. | DOI | MR | Zbl
and ,[17] Elliptic boundary value problems on corner domains. Smoothness and asymptotics of solutions. In: Vol. 1341 of Lecture Notes in Mathematics. Springer-Verlag, Berlin (1988). | MR | Zbl
,[18] A hybrid high-order method for Leray-Lions elliptic equations on general meshes. Math. Comput. 86 (2017) 2159–2191. | DOI | MR | Zbl
and ,[19] Mathematical and numerical models for coupling surface and groundwater flows. Appl. Numer. Math. 43 (2002) 57–74. | DOI | MR | Zbl
, and ,[20] A primal-mixed formulation for the strong coupling of quasi-Newtonian fluids with porous media. Adv. Comput. Math. 42 (2016) 675–720. | DOI | MR | Zbl
, , and ,[21] Error analysis in Lp, 1 ≤ p ≤ ∞, for mixed finite element methods for linear and quasi-linear elliptic problems. ESAIM: M2AN 22 (1988) 371–387. | DOI | Numdam | MR | Zbl
,[22] Coupled generalized nonlinear Stokes flow with flow through a porous medium. SIAM J. Numer. Anal. 47 (2009) 929–952. | DOI | MR | Zbl
, and ,[23] Coupling nonlinear Stokes and Darcy flow using mortar finite elements. Appl. Numer. Math. 61 (2011) 1198–1222. | DOI | MR | Zbl
, and ,[24] Vol. 1 of Cardiovascular Mathematics: Modeling and Simulation of the Circulatory System. Springer Science & Business Media (2010). | MR | Zbl
, and . In:[25] Fluid-structure interaction: modeling, adaptive discretisations and solvers, In: Vol. 20 of Radon Series on Computational and Applied Mathematics. De Gruyter(2017) . | DOI
, , , and ,[26] An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-state Problems. Springer Science & Business Media (2011). | MR | Zbl
,[27] Fundamental trends in fluid-structure interaction, Vol. 1 of Contemporary Challenges in Mathematical Fluid Dynamics and Its Applications. World Scientific Publishing Co., Pte. Ltd., Hackensack, NJ, 2010. | DOI | MR
and ,[28] A lubrication fracture model in a poro-elastic medium. Math. Models Methods Appl. Sci. 25 (2015) 587–645. | DOI | MR | Zbl
, , and ,[29] Elliptic Problems in Nonsmooth Domains. SIAM (2011). | DOI | MR | Zbl
,[30] Computational comparison between Newtonian and non-Newtonian blood rheologies in stenotic vessels. In: Biomedical Technology. Vol 84 of Lecture Notes in Applied and Computational Mechanics. Springer (2018) 169–183. | DOI
and ,[31] New development in FreeFem++. J. Numer. Math. 20 (2012) 251–265. | DOI | MR | Zbl
,[32] A 3D non-Newtonian fluid–structure interaction model for blood flow in arteries. J. Comput. Appl. Math. 234 (2010) 2783–2791. | DOI | MR | Zbl
, and ,[33] Coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 40 (2003) 2195–2218. | DOI | MR | Zbl
, and ,[34] Phase-field modeling of proppant-filled fractures in a poroelastic medium. Comput. Methods Appl. Mech. Eng. 312 (2016) 509–541. | DOI | MR | Zbl
, , and ,[35] Predictive network modeling of single-phase non-Newtonian flow in porous media. J. Colloid Interface Sci. 264 (2003) 256–265. | DOI
, and ,[36] Vol. 13 of Weak and Measure-valued Solutions to Evolutionary PDEs. CRC Press (1996). | MR | Zbl
, , and ,[37] Vol. 14 of Computational Rheology. World Scientific (2002). | DOI | MR | Zbl
and ,[38] Models for flow of non-Newtonian and complex fluids through porous media. J. Non-Newton. Fluid Mech. 102 (2002) 447–473. | DOI | Zbl
and ,[39] Vol. 13 of An Introduction to Partial Differential Equations. Springer Science & Business Media (2006). | MR | Zbl
and ,[40] Locally conservative coupling of Stokes and Darcy flows. SIAM J. Numer. Anal. 42 (2005) 1959–1977. | DOI | MR | Zbl
and ,[41] On the boundary condition at the surface of a porous media. Stud. Appl. Math. 50 (1971) 93–101. | DOI | Zbl
,[42] Sur l’approximation numérique des écoulements quasi-newtoniens dont la viscosité suit la loi puissance ou la loi de Carreau. ESAIM: M2AN 27 (1993) 131–155. | DOI | Numdam | MR | Zbl
,[43] Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54 (1990) 483–493. | DOI | MR | Zbl
and ,[44] Poroelastic filtration coupled to Stokes flow. Control Theory of Partial Differential Equations. Vol. 242 of Lect. Notes Pure Appl. Math. Chapman & Hall/CRC, Boca Raton, FL (2005) 229–241. | DOI | MR | Zbl
,[45] Nonlinear degenerate evolution equations in mixed formulation. SIAM J. Math. Anal. 42 (2010) 2114–2131. | DOI | MR | Zbl
,[46] Vol. 49 of Monotone Operators in Banach Space and Nonlinear Partial Differential Equations. American Mathematical Soc. (2013). | DOI | MR | Zbl
,[47] Domain decomposition for coupled Stokes and Darcy flows. Comput. Methods Appl. Mech. Eng. 268 (2014) 264–283. | DOI | MR | Zbl
, and ,Cité par Sources :