Periodic solutions of a hysteresis model for breathing
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 1, pp. 255-257.

We propose to model the lungs as a viscoelastic deformable porous medium with a hysteretic pressure–volume relationship described by the Preisach operator. Breathing is represented as an isothermal time-periodic process with gas exchange between the interior and exterior of the body. The main result consists in proving the existence of a periodic solution under an arbitrary periodic forcing in suitable function spaces.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1051/m2an/2019060
Classification : 35Q92, 35B10, 47J40
Mots-clés : Hysteresis operators, periodic solutions, mammalian lungs, convergence scheme
@article{M2AN_2020__54_1_255_0,
     author = {Eleuteri, Michela and Ipocoana, Erica and Kopfov\'a, Jana and Krej\v{c}{\'\i}, Pavel},
     title = {Periodic solutions of a hysteresis model for breathing},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {255--257},
     publisher = {EDP-Sciences},
     volume = {54},
     number = {1},
     year = {2020},
     doi = {10.1051/m2an/2019060},
     mrnumber = {4058210},
     zbl = {1434.35254},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2019060/}
}
TY  - JOUR
AU  - Eleuteri, Michela
AU  - Ipocoana, Erica
AU  - Kopfová, Jana
AU  - Krejčí, Pavel
TI  - Periodic solutions of a hysteresis model for breathing
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2020
SP  - 255
EP  - 257
VL  - 54
IS  - 1
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2019060/
DO  - 10.1051/m2an/2019060
LA  - en
ID  - M2AN_2020__54_1_255_0
ER  - 
%0 Journal Article
%A Eleuteri, Michela
%A Ipocoana, Erica
%A Kopfová, Jana
%A Krejčí, Pavel
%T Periodic solutions of a hysteresis model for breathing
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2020
%P 255-257
%V 54
%N 1
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2019060/
%R 10.1051/m2an/2019060
%G en
%F M2AN_2020__54_1_255_0
Eleuteri, Michela; Ipocoana, Erica; Kopfová, Jana; Krejčí, Pavel. Periodic solutions of a hysteresis model for breathing. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 1, pp. 255-257. doi : 10.1051/m2an/2019060. http://www.numdam.org/articles/10.1051/m2an/2019060/

[1] B. Albers and P. Krejčí, Unsaturated porous media flow with thermomechanical interaction. Math. Methods Appl. Sci. 39 (2016) 2220–2238. | DOI | MR | Zbl

[2] M.B.P. Amato, C.S.V. Barbas, D.M. Medeiros, R.B. Magaldi, G.P. Schettino, G. Lorenzi-Filho, R.A. Kairalla, D. Deheinzelin, C. Munoz, R. Oliveira and T.Y. Takagaki, Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. New Engl. J. Med. 338 (1998) 347–354. | DOI

[3] R. Amini, K. Creeden and U. Narusawa, A mechanistic model for quasistatic pulmonary pressure–volume curves for inflation. J. Biomech. Eng. 127 (2005) 619–629. | DOI

[4] H. Bachofen and J. Hildebrant, Area analysis of pressure–volume hysteresis in mammalian lungs. J. Appl. Physiol. 30 (1971) 493–497. | DOI

[5] V. Brusasco and R. Pellegrino, Hysteresis of airways and lung parenchyma. Respir. Med. 89 (1995) 317–322. | DOI

[6] M. Cloetta, Untersuchungen über die Elastizität der Lunge und deren Bedeutung für die Zirkulation. Pflüger’s Archiv für die gesamte Physiologie des Menschen und der Tiere 152 (1913) 339–364. | DOI

[7] B. Detmann, P. Krejč and E. Rocca, Periodic waves in unsaturated porous media with hysteresis. In Proceedings of ECM 2016, edited by V. Mehrmann and M. Skutella, EMS Publishing House, Zürich (2018) 219–234. | MR | Zbl

[8] J. Dios Escolar, M. Asunción Escolar and J. Guzmán, Bronchial hysteresis: morphometric study on the rat lung. Exp. Lung Res. 29 (2003) 195–209. | DOI

[9] J. Dios Escolar, A. Escolar, Lungs histeresis: A morphological view. Histol. Histopathol. 19 (2004) 159–166.

[10] D. Flynn, A survey of hysteresis models of mammalian lungs. Rend. Sem. Mat. Univ. Politec. Torino 72 (2014) 17–36. | MR | Zbl

[11] J. Gil and E.R. Weibel, Morphological study of pressure–volume hysteresis in rat lungs fixed by vascular perfusion. Respir. Physiol. 15 (1972) 190–213. | DOI

[12] J. Hildebrandt, Pressure–volume data of cat lung interpreted by a plastoelastic, linear viscoelastic model. J. Appl. Physiol. 28 (1970) 365–372. | DOI

[13] B.P. Kramer and M. Fussenegger, Hysteresis in a synthetic mammalian gene network. PNAS 102 (2005) 9517–9522. | DOI

[14] M.A. Krasnosel’Skii and A.V. Pokrovskii, Systems with Hysteresis. Nauka, Moscow (1983). | Zbl

[15] P. Krejčí, Hysteresis, Convexity and Dissipation in Hyperbolic Equations. Gakkō tosho, Tokyo (1996). | MR | Zbl

[16] S.J. Lai-Fook and R.E. Hyatt, Effects of age on elastic moduli of human lungs. J. Appl. Physiol. 89 (2000) 163–168. | DOI

[17] S. Liu, S.S. Margulies and T.A. Wilson, Deformation of the dog lung in the chest wall. J. Appl. Physiol. 68 (1990) 1979–1987. | DOI

[18] J. Mead, Mechanical properties of lungs. Physiol. Rev. 41 (1961) 281–330. | DOI

[19] W. Mitzner, Mechanics of the lung in the 20th century. Compr. Physiol. 1 (2011) 2009–2027. | DOI

[20] M.L. Mogensen, A physiological mathematical model of the respiratory system, Ph.D. thesis, Aalborg University, Denmark (2011).

[21] J. Nečas, Les méthodes directes en théorie des équations elliptiques. Academia, Prague (1967). | MR | Zbl

[22] H.J. Schiller, J. Steinberg, J. Halter, U. Mccann, M. Dasilva, L.A. Gatto, D. Carney and G. Nieman, Alveolar inflation during generation of a quasi-static pressure/volume curve in the acutely injured lung. Crit. Care Med. 31 (2003) 1126–1133. | DOI

[23] A. Visintin, Differential Models of Hysteresis, Springer, Berlin-Heidelberg (1994). | DOI | MR | Zbl

[24] T.V. Wilson, Relations among recoil pressure, surface area and surface tension in the lung. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 50 (1981) 921–926.

[25] E. Zeidler, Nonlinear Functional Analysis and its Applications: I. Fixed Point Theorems. Springer-Verlag, New York (1986). | DOI | MR | Zbl

Cité par Sources :