We propose to model the lungs as a viscoelastic deformable porous medium with a hysteretic pressure–volume relationship described by the Preisach operator. Breathing is represented as an isothermal time-periodic process with gas exchange between the interior and exterior of the body. The main result consists in proving the existence of a periodic solution under an arbitrary periodic forcing in suitable function spaces.
Accepté le :
Publié le :
DOI : 10.1051/m2an/2019060
Mots-clés : Hysteresis operators, periodic solutions, mammalian lungs, convergence scheme
@article{M2AN_2020__54_1_255_0, author = {Eleuteri, Michela and Ipocoana, Erica and Kopfov\'a, Jana and Krej\v{c}{\'\i}, Pavel}, title = {Periodic solutions of a hysteresis model for breathing}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {255--257}, publisher = {EDP-Sciences}, volume = {54}, number = {1}, year = {2020}, doi = {10.1051/m2an/2019060}, mrnumber = {4058210}, zbl = {1434.35254}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2019060/} }
TY - JOUR AU - Eleuteri, Michela AU - Ipocoana, Erica AU - Kopfová, Jana AU - Krejčí, Pavel TI - Periodic solutions of a hysteresis model for breathing JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2020 SP - 255 EP - 257 VL - 54 IS - 1 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2019060/ DO - 10.1051/m2an/2019060 LA - en ID - M2AN_2020__54_1_255_0 ER -
%0 Journal Article %A Eleuteri, Michela %A Ipocoana, Erica %A Kopfová, Jana %A Krejčí, Pavel %T Periodic solutions of a hysteresis model for breathing %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2020 %P 255-257 %V 54 %N 1 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2019060/ %R 10.1051/m2an/2019060 %G en %F M2AN_2020__54_1_255_0
Eleuteri, Michela; Ipocoana, Erica; Kopfová, Jana; Krejčí, Pavel. Periodic solutions of a hysteresis model for breathing. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 1, pp. 255-257. doi : 10.1051/m2an/2019060. http://www.numdam.org/articles/10.1051/m2an/2019060/
[1] Unsaturated porous media flow with thermomechanical interaction. Math. Methods Appl. Sci. 39 (2016) 2220–2238. | DOI | MR | Zbl
and ,[2] Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. New Engl. J. Med. 338 (1998) 347–354. | DOI
, , , , , , , , , and ,[3] A mechanistic model for quasistatic pulmonary pressure–volume curves for inflation. J. Biomech. Eng. 127 (2005) 619–629. | DOI
, and ,[4] Area analysis of pressure–volume hysteresis in mammalian lungs. J. Appl. Physiol. 30 (1971) 493–497. | DOI
and ,[5] Hysteresis of airways and lung parenchyma. Respir. Med. 89 (1995) 317–322. | DOI
and ,[6] Untersuchungen über die Elastizität der Lunge und deren Bedeutung für die Zirkulation. Pflüger’s Archiv für die gesamte Physiologie des Menschen und der Tiere 152 (1913) 339–364. | DOI
,[7] Periodic waves in unsaturated porous media with hysteresis. In Proceedings of ECM 2016, edited by and , EMS Publishing House, Zürich (2018) 219–234. | MR | Zbl
, and ,[8] Bronchial hysteresis: morphometric study on the rat lung. Exp. Lung Res. 29 (2003) 195–209. | DOI
, and ,[9] Lungs histeresis: A morphological view. Histol. Histopathol. 19 (2004) 159–166.
, ,[10] A survey of hysteresis models of mammalian lungs. Rend. Sem. Mat. Univ. Politec. Torino 72 (2014) 17–36. | MR | Zbl
,[11] Morphological study of pressure–volume hysteresis in rat lungs fixed by vascular perfusion. Respir. Physiol. 15 (1972) 190–213. | DOI
and ,[12] Pressure–volume data of cat lung interpreted by a plastoelastic, linear viscoelastic model. J. Appl. Physiol. 28 (1970) 365–372. | DOI
,[13] Hysteresis in a synthetic mammalian gene network. PNAS 102 (2005) 9517–9522. | DOI
and ,[14] Systems with Hysteresis. Nauka, Moscow (1983). | Zbl
and ,[15] Hysteresis, Convexity and Dissipation in Hyperbolic Equations. Gakkō tosho, Tokyo (1996). | MR | Zbl
,[16] Effects of age on elastic moduli of human lungs. J. Appl. Physiol. 89 (2000) 163–168. | DOI
and ,[17] Deformation of the dog lung in the chest wall. J. Appl. Physiol. 68 (1990) 1979–1987. | DOI
, and ,[18] Mechanical properties of lungs. Physiol. Rev. 41 (1961) 281–330. | DOI
,[19] Mechanics of the lung in the 20th century. Compr. Physiol. 1 (2011) 2009–2027. | DOI
,[20] A physiological mathematical model of the respiratory system, Ph.D. thesis, Aalborg University, Denmark (2011).
,[21] Les méthodes directes en théorie des équations elliptiques. Academia, Prague (1967). | MR | Zbl
,[22] Alveolar inflation during generation of a quasi-static pressure/volume curve in the acutely injured lung. Crit. Care Med. 31 (2003) 1126–1133. | DOI
, , , , , , and ,[23] Differential Models of Hysteresis, Springer, Berlin-Heidelberg (1994). | DOI | MR | Zbl
,[24] Relations among recoil pressure, surface area and surface tension in the lung. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 50 (1981) 921–926.
,[25] Nonlinear Functional Analysis and its Applications: I. Fixed Point Theorems. Springer-Verlag, New York (1986). | DOI | MR | Zbl
,Cité par Sources :