We study the existence of strong solutions to a 2d fluid-structure system. The fluid is modelled by the incompressible Navier–Stokes equations. The structure represents a steering gear and is described by two parameters corresponding to angles of deformation. Its equations are derived from a virtual work principle. The global domain represents a wind tunnel and imposes mixed boundary conditions to the fluid velocity. Our method reposes on the analysis of the linearized system. Under a compatibility condition on the initial data, we can guarantee local existence in time of strong solutions to the fluid-structure problem.
Accepté le :
Publié le :
DOI : 10.1051/m2an/2019059
Mots-clés : Strong solutions, fluid-structure interaction, Navier–Stokes equations, deformable structure
@article{M2AN_2020__54_1_301_0, author = {Delay, Guillaume}, title = {Existence of strong solutions to a fluid-structure system with a structure given by a finite number of parameters}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {301--333}, publisher = {EDP-Sciences}, volume = {54}, number = {1}, year = {2020}, doi = {10.1051/m2an/2019059}, mrnumber = {4058209}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2019059/} }
TY - JOUR AU - Delay, Guillaume TI - Existence of strong solutions to a fluid-structure system with a structure given by a finite number of parameters JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2020 SP - 301 EP - 333 VL - 54 IS - 1 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2019059/ DO - 10.1051/m2an/2019059 LA - en ID - M2AN_2020__54_1_301_0 ER -
%0 Journal Article %A Delay, Guillaume %T Existence of strong solutions to a fluid-structure system with a structure given by a finite number of parameters %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2020 %P 301-333 %V 54 %N 1 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2019059/ %R 10.1051/m2an/2019059 %G en %F M2AN_2020__54_1_301_0
Delay, Guillaume. Existence of strong solutions to a fluid-structure system with a structure given by a finite number of parameters. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 1, pp. 301-333. doi : 10.1051/m2an/2019059. http://www.numdam.org/articles/10.1051/m2an/2019059/
[1] Sobolev spaces. In: Vol. 65 of Pure and Applied Mathematics. Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London (1975). | MR | Zbl
,[2] Multiscale modeling of the respiratory tract. Math. Models Methods Appl. Sci. 20 (2010) 59–93. | DOI | MR | Zbl
, and ,[3] Computational Fluid-Structure Interaction, Methods and Applications. Wiley (2013). | Zbl
, and ,[4] On the existence of strong solutions to a coupled fluid-structure evolution problem. J. Math. Fluid Mech. 6 (2004) 21–52. | DOI | MR | Zbl
,[5] Representation and control of infinite dimensional systems, 2nd edition. In: Systems & Control: Foundations & Applications. Birkhäuser Boston, Inc, Boston, MA (2007). | MR
, , and ,[6] Existence of weak solutions for the three-dimensional motion of an elastic structure in an incompressible fluid. J. Math. Fluid Mech. 9 (2007) 262–294. | DOI | MR | Zbl
,[7] A regularity result for a solid-fluid system associated to the compressible Navier-Stokes equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (2009) 777–813. | DOI | Numdam | MR | Zbl
and ,[8] Regular solutions of a problem coupling a compressible fluid and an elastic structure. J. Math. Pures Appl. 94 (2010) 341–365. | DOI | MR | Zbl
and ,[9] On the interaction problem between a compressible fluid and a Saint-Venant Kirchhoff elastic structure. Adv. Differ. Equ. 22 (2017) 1–48. | MR
and ,[10] Existence of strong solutions for the motion of an elastic structure in an incompressible viscous fluid. Interfaces Free Bound. 14 (2012) 273–306. | DOI | MR | Zbl
, and ,[11] Fluid-rigid structure interaction system with Coulomb’s law. SIAM J. Math. Anal. 49 (2017) 4625–4657. | DOI | MR
, and ,[12] Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate. J. Math. Fluid Mech. 7 (2005) 368–404. | DOI | MR | Zbl
, , and ,[13] Les inéquations en mécanique et en physique. Dunod, Paris (1972). Travaux et Recherches Mathématiques, No. 21. | MR | Zbl
and ,[14] An introduction to the mathematical theory of the Navier–Stokes equations, 2nd edition. In: Springer Monographs in Mathematics. Springer, New York (2011). | MR | Zbl
,[15] Existence for an unsteady fluid–structure interaction problem. M2AN Math. Model. Numer. Anal. 34 (2000) 609–636. | DOI | Numdam | MR | Zbl
and ,[16] Elliptic problems in nonsmooth domains. In: Vol. 69 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2011). | MR | Zbl
,[17] Lack of collision between solid bodies in a 2D incompressible viscous flow. Comm. Partial Differ. Equ. 32 (2007) 1345–1371. | DOI | MR | Zbl
,[18] Existence of solutions for the equations modeling the motion of rigid bodies in an ideal fluid. J. Funct. Anal. 259 (2010) 2856–2885. | DOI | MR | Zbl
, and ,[19] Existence of strong solutions to a fluid-structure system. SIAM J. Math. Anal. 43 (2011) 389–410. | DOI | MR | Zbl
,[20] Problèmes aux limites non homogènes et applications. In: Vol. 1 of Travaux et Recherches Mathématiques, No. 17. Dunod, Paris (1968). | MR | Zbl
and ,[21] Single input controllability of a simplified fluid-structure interaction model. ESAIM Control Optim. Calc. Var. 19 (2013) 20–42. | DOI | Numdam | MR | Zbl
, and ,[22] Analysis of a system modelling the motion of a piston in a viscous gas. J. Math. Fluid Mech. 19 (2017) 551–579. | DOI | MR
, and ,[23] Elliptic equations in polyhedral domains. In: Vol. 162 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (2010). | DOI | MR | Zbl
and ,[24] Weak solutions for the motion of a self-propelled deformable structure in a viscous incompressible fluid. Acta Appl. Math. 116 (2011) 329–352. | DOI | MR | Zbl
, and ,[25] Boundary stabilization of the Navier-Stokes equations in the case of mixed boundary conditions. SIAM J. Control Optim. 53 (2015) 3006–3039. | DOI | MR
and ,[26] Semigroups of linear operators and applications to partial differential equations. In: Vol. 44 of Applied Mathematical Sciences. Springer-Verlag, New York (1983). | MR | Zbl
,[27] Stokes and Navier-Stokes equations with nonhomogeneous boundary conditions. Ann. Inst. H. Poincaré Anal. Non Linéaire 24 (2007) 921–951. | DOI | Numdam | MR | Zbl
,[28] A fluid-structure model coupling the Navier-Stokes equations and the Lamé system. J. Math. Pures Appl. 102 (2014) 546–596. | DOI | MR | Zbl
and ,[29] An initial and boundary value problem modeling of fish-like swimming. Arch. Ration. Mech. Anal. 188 (2008) 429–455. | DOI | MR | Zbl
, , and ,[30] Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid. Arch. Ration. Mech. Anal. 161 (2002) 113–147. | DOI | MR | Zbl
, and ,[31] The Navier–Stokes equations. In: Birkhäuser Advanced Texts: Basler Lehrbücher [Birkhäuser Advanced Texts: Basel Textbooks]. Birkhäuser Verlag, Basel (2001). | MR | Zbl
,[32] Analysis of strong solutions for the equations modeling the motion of a rigid-fluid system in a bounded domain. Adv. Differ. Equ. 8 (2003) 1499–1532. | MR | Zbl
,[33] Stabilization of a fluid-rigid body system. J. Differ. Equ. 259 (2015) 6459–6493. | DOI | MR
, and ,Cité par Sources :