Existence of strong solutions to a fluid-structure system with a structure given by a finite number of parameters
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 1, pp. 301-333.

We study the existence of strong solutions to a 2d fluid-structure system. The fluid is modelled by the incompressible Navier–Stokes equations. The structure represents a steering gear and is described by two parameters corresponding to angles of deformation. Its equations are derived from a virtual work principle. The global domain represents a wind tunnel and imposes mixed boundary conditions to the fluid velocity. Our method reposes on the analysis of the linearized system. Under a compatibility condition on the initial data, we can guarantee local existence in time of strong solutions to the fluid-structure problem.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1051/m2an/2019059
Classification : 74F10, 74H20, 74H25, 74H30, 76D03
Mots-clés : Strong solutions, fluid-structure interaction, Navier–Stokes equations, deformable structure
@article{M2AN_2020__54_1_301_0,
     author = {Delay, Guillaume},
     title = {Existence of strong solutions to a fluid-structure system with a structure given by a finite number of parameters},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {301--333},
     publisher = {EDP-Sciences},
     volume = {54},
     number = {1},
     year = {2020},
     doi = {10.1051/m2an/2019059},
     mrnumber = {4058209},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2019059/}
}
TY  - JOUR
AU  - Delay, Guillaume
TI  - Existence of strong solutions to a fluid-structure system with a structure given by a finite number of parameters
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2020
SP  - 301
EP  - 333
VL  - 54
IS  - 1
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2019059/
DO  - 10.1051/m2an/2019059
LA  - en
ID  - M2AN_2020__54_1_301_0
ER  - 
%0 Journal Article
%A Delay, Guillaume
%T Existence of strong solutions to a fluid-structure system with a structure given by a finite number of parameters
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2020
%P 301-333
%V 54
%N 1
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2019059/
%R 10.1051/m2an/2019059
%G en
%F M2AN_2020__54_1_301_0
Delay, Guillaume. Existence of strong solutions to a fluid-structure system with a structure given by a finite number of parameters. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 1, pp. 301-333. doi : 10.1051/m2an/2019059. http://www.numdam.org/articles/10.1051/m2an/2019059/

[1] R.A. Adams, Sobolev spaces. In: Vol. 65 of Pure and Applied Mathematics. Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London (1975). | MR | Zbl

[2] L. Baffico, C. Grandmont and B. Maury, Multiscale modeling of the respiratory tract. Math. Models Methods Appl. Sci. 20 (2010) 59–93. | DOI | MR | Zbl

[3] Y. Bazilevs, K. Takizawa and T.E. Tezduyar, Computational Fluid-Structure Interaction, Methods and Applications. Wiley (2013). | Zbl

[4] H. Beirão Da Veiga, On the existence of strong solutions to a coupled fluid-structure evolution problem. J. Math. Fluid Mech. 6 (2004) 21–52. | DOI | MR | Zbl

[5] A. Bensoussan, G. Da Prato, M.C. Delfour and S.K. Mitter, Representation and control of infinite dimensional systems, 2nd edition. In: Systems & Control: Foundations & Applications. Birkhäuser Boston, Inc, Boston, MA (2007). | MR

[6] M. Boulakia, Existence of weak solutions for the three-dimensional motion of an elastic structure in an incompressible fluid. J. Math. Fluid Mech. 9 (2007) 262–294. | DOI | MR | Zbl

[7] M. Boulakia and S. Guerrero, A regularity result for a solid-fluid system associated to the compressible Navier-Stokes equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (2009) 777–813. | DOI | Numdam | MR | Zbl

[8] M. Boulakia and S. Guerrero, Regular solutions of a problem coupling a compressible fluid and an elastic structure. J. Math. Pures Appl. 94 (2010) 341–365. | DOI | MR | Zbl

[9] M. Boulakia and S. Guerrero, On the interaction problem between a compressible fluid and a Saint-Venant Kirchhoff elastic structure. Adv. Differ. Equ. 22 (2017) 1–48. | MR

[10] M. Boulakia, E.L. Schwindt and T. Takahashi, Existence of strong solutions for the motion of an elastic structure in an incompressible viscous fluid. Interfaces Free Bound. 14 (2012) 273–306. | DOI | MR | Zbl

[11] L. Bălilescu, J. San Martín and T. Takahashi, Fluid-rigid structure interaction system with Coulomb’s law. SIAM J. Math. Anal. 49 (2017) 4625–4657. | DOI | MR

[12] A. Chambolle, B. Desjardins, M.J. Esteban and C. Grandmont, Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate. J. Math. Fluid Mech. 7 (2005) 368–404. | DOI | MR | Zbl

[13] G. Duvaut and J.-L. Lions, Les inéquations en mécanique et en physique. Dunod, Paris (1972). Travaux et Recherches Mathématiques, No. 21. | MR | Zbl

[14] G.P. Galdi, An introduction to the mathematical theory of the Navier–Stokes equations, 2nd edition. In: Springer Monographs in Mathematics. Springer, New York (2011). | MR | Zbl

[15] C. Grandmont and Y. Maday, Existence for an unsteady fluid–structure interaction problem. M2AN Math. Model. Numer. Anal. 34 (2000) 609–636. | DOI | Numdam | MR | Zbl

[16] P. Grisvard, Elliptic problems in nonsmooth domains. In: Vol. 69 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2011). | MR | Zbl

[17] M. Hillairet, Lack of collision between solid bodies in a 2D incompressible viscous flow. Comm. Partial Differ. Equ. 32 (2007) 1345–1371. | DOI | MR | Zbl

[18] J.G. Houot, J. San Martin and M. Tucsnak, Existence of solutions for the equations modeling the motion of rigid bodies in an ideal fluid. J. Funct. Anal. 259 (2010) 2856–2885. | DOI | MR | Zbl

[19] J. Lequeurre, Existence of strong solutions to a fluid-structure system. SIAM J. Math. Anal. 43 (2011) 389–410. | DOI | MR | Zbl

[20] J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications. In: Vol. 1 of Travaux et Recherches Mathématiques, No. 17. Dunod, Paris (1968). | MR | Zbl

[21] Y. Liu, T. Takahashi and M. Tucsnak, Single input controllability of a simplified fluid-structure interaction model. ESAIM Control Optim. Calc. Var. 19 (2013) 20–42. | DOI | Numdam | MR | Zbl

[22] D. Maity, T. Takahashi and M. Tucsnak, Analysis of a system modelling the motion of a piston in a viscous gas. J. Math. Fluid Mech. 19 (2017) 551–579. | DOI | MR

[23] V. Maz’Ya and J. Rossmann, Elliptic equations in polyhedral domains. In: Vol. 162 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (2010). | DOI | MR | Zbl

[24] Š. Nečasová, T. Takahashi and M. Tucsnak, Weak solutions for the motion of a self-propelled deformable structure in a viscous incompressible fluid. Acta Appl. Math. 116 (2011) 329–352. | DOI | MR | Zbl

[25] P.A. Nguyen and J.-P. Raymond, Boundary stabilization of the Navier-Stokes equations in the case of mixed boundary conditions. SIAM J. Control Optim. 53 (2015) 3006–3039. | DOI | MR

[26] A. Pazy, Semigroups of linear operators and applications to partial differential equations. In: Vol. 44 of Applied Mathematical Sciences. Springer-Verlag, New York (1983). | MR | Zbl

[27] J.-P. Raymond, Stokes and Navier-Stokes equations with nonhomogeneous boundary conditions. Ann. Inst. H. Poincaré Anal. Non Linéaire 24 (2007) 921–951. | DOI | Numdam | MR | Zbl

[28] J.-P. Raymond and M. Vanninathan, A fluid-structure model coupling the Navier-Stokes equations and the Lamé system. J. Math. Pures Appl. 102 (2014) 546–596. | DOI | MR | Zbl

[29] J. San Martín, J.-F. Scheid, T. Takahashi and M. Tucsnak, An initial and boundary value problem modeling of fish-like swimming. Arch. Ration. Mech. Anal. 188 (2008) 429–455. | DOI | MR | Zbl

[30] J.A. San Martín, V. Starovoitov and M. Tucsnak, Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid. Arch. Ration. Mech. Anal. 161 (2002) 113–147. | DOI | MR | Zbl

[31] H. Sohr, The Navier–Stokes equations. In: Birkhäuser Advanced Texts: Basler Lehrbücher [Birkhäuser Advanced Texts: Basel Textbooks]. Birkhäuser Verlag, Basel (2001). | MR | Zbl

[32] T. Takahashi, Analysis of strong solutions for the equations modeling the motion of a rigid-fluid system in a bounded domain. Adv. Differ. Equ. 8 (2003) 1499–1532. | MR | Zbl

[33] T. Takahashi, M. Tucsnak and G. Weiss, Stabilization of a fluid-rigid body system. J. Differ. Equ. 259 (2015) 6459–6493. | DOI | MR

Cité par Sources :