Finite element approximation of an obstacle problem for a class of integro–differential operators
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 1, pp. 229-253.

We study the regularity of the solution to an obstacle problem for a class of integro–differential operators. The differential part is a second order elliptic operator, whereas the nonlocal part is given by the integral fractional Laplacian. The obtained smoothness is then used to design and analyze a finite element scheme.

DOI : 10.1051/m2an/2019058
Classification : 35R11, 35R35, 41A29, 65K15, 65N15, 65N30
Mots-clés : Obstacle problem, free boundaries, integro–differential operators, finite elements, Dunford–Taylor integral
@article{M2AN_2020__54_1_229_0,
     author = {Bonito, Andrea and Lei, Wenyu and Salgado, Abner J.},
     title = {Finite element approximation of an obstacle problem for a class of integro{\textendash}differential operators},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {229--253},
     publisher = {EDP-Sciences},
     volume = {54},
     number = {1},
     year = {2020},
     doi = {10.1051/m2an/2019058},
     mrnumber = {4055457},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2019058/}
}
TY  - JOUR
AU  - Bonito, Andrea
AU  - Lei, Wenyu
AU  - Salgado, Abner J.
TI  - Finite element approximation of an obstacle problem for a class of integro–differential operators
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2020
SP  - 229
EP  - 253
VL  - 54
IS  - 1
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2019058/
DO  - 10.1051/m2an/2019058
LA  - en
ID  - M2AN_2020__54_1_229_0
ER  - 
%0 Journal Article
%A Bonito, Andrea
%A Lei, Wenyu
%A Salgado, Abner J.
%T Finite element approximation of an obstacle problem for a class of integro–differential operators
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2020
%P 229-253
%V 54
%N 1
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2019058/
%R 10.1051/m2an/2019058
%G en
%F M2AN_2020__54_1_229_0
Bonito, Andrea; Lei, Wenyu; Salgado, Abner J. Finite element approximation of an obstacle problem for a class of integro–differential operators. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 1, pp. 229-253. doi : 10.1051/m2an/2019058. http://www.numdam.org/articles/10.1051/m2an/2019058/

G. Acosta and J.P. Borthagaray, A fractional Laplace equation: regularity of solutions and finite element approximations. SIAM J. Numer. Anal. 55 (2017) 472–495. | DOI | MR

G. Acosta, F.M. Bersetche and J.P. Borthagaray, A short FE implementation for a 2D homogeneous Dirichlet problem of a fractional Laplacian. Comput. Math. Appl. 74 (2017) 784–816. | DOI | MR | Zbl

G. Alzetta, D. Arndt, W. Bangerth, V. Boddu, B. Brands, D. Davydov, R. Gassmoeller, T. Heister, L. Heltai, K. Kormann, M. Kronbichler, M. Maier, J.-P. Pelteret, B. Turcksin and D. Wells, The deal.II library, version 9.0. J. Numer. Math. 26 (2018) 173–183. | DOI | MR

P. Auscher, S. Hofmann, M. Lacey, A. Mcintosh, P. Tchamitchian, The solution of the Kato square root problem for second order elliptic operators on n . Ann. Math. 156 (2002) 633–654. | DOI | MR | Zbl

S. Bartels, Numerical methods for nonlinear partial differential equations. In: Vol. 47 of Springer Series in Computational Mathematics. Springer, Cham (2015). | DOI | MR | Zbl

A. Bonito and J.E. Pasciak, Numerical approximation of fractional powers of elliptic operators. Math. Comp. 84 (2015) 2083–2110. | DOI | MR

A. Bonito and J.E. Pasciak, Numerical approximation of fractional powers of regularly accretive operators. IMA J. Numer. Anal. 37 (2017) 1245–1273. | DOI | MR | Zbl

A. Bonito, J.P. Borthagaray, R.H. Nochetto, E. Otárola and A.J. Salgado, Numerical methods for fractional diffusion. Comput. Vis. Sci. 19 (2018) 19–46. | DOI | MR

A. Bonito, W. Lei and J.E. Pasciak, Numerical approximation of the integral fractional Laplacian. Numer. Math. 142 (2019) 235–278. | DOI | MR

A. Bonito, W. Lei and J.E. Pasciak, On sinc quadrature approximations of fractional powers of regularly accretive operators. J. Numer. Math. 27 (2017). | MR | Zbl

J.P. Borthagaray, R.H. Nochetto and A.J. Salgado, , Weighted Sobolev regularity and rate of approximation of the obstacle problem for the integral fractional Laplacian. Preprint: arXiv:1806.08048 (2018). | MR

S.I. Boyarchenko and S.Z. Levendorskii, Perpetual American options under Lévy processes. SIAM J. Control Optim. 40 (2002) 1663–1696. | DOI | MR | Zbl

J.H. Bramble, J.E. Pasciak and P.S. Vassilevski, Computational scales of Sobolev norms with application to preconditioning. Math. Comp. 69 (2000) 463–480. | DOI | MR | Zbl

M. Broadie and J. Detemple, The valuation of American options on multiple assets. Math. Finance 7 (1997) 241–286. | DOI | MR | Zbl

O. Burkovska and M. Gunzburger, Regularity analyses and approximation of nonlocal variational equality and inequality problems. J. Math. Anal. Appl. 478 (2019) 1027–1048. | DOI | MR

S.N. Chandler-Wilde, D.P. Hewett and A. Moiola, Interpolation of Hilbert and Sobolev spaces: quantitative estimates and counterexamples. Mathematika 61 (2015) 414–443. | DOI | MR

Z. Chen and R.H. Nochetto, Residual type a posteriori error estimates for elliptic obstacle problems. Numer. Math. 84 (2000) 527–548. | DOI | MR | Zbl

P.G. Ciarlet, The finite element method for elliptic problems. In: Vol. 40 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2002). | MR | Zbl

M. Dauge, Regularity and Singularities in Polyhedral Domains. Available on: https://perso.univ-rennes1.fr/monique.dauge/publis/Talk_Karlsruhe08.pdf (2008).

M. D’Elia and M. Gunzburger, The fractional Laplacian operator on bounded domains as a special case of the nonlocal diffusion operator. Comput. Math. Appl. 66 (2013) 1245–1260. | DOI | MR

A. Ern and J.-L. Guermond, Theory and practice of finite elements. In: Vol. 159 of Applied Mathematical Sciences. Springer-Verlag, New York (2004). | DOI | MR | Zbl

A. Friedman, Variational Principles and Free-boundary Problems, edited byR.E. Krieger, 2nd edition, Publishing Co., Inc, Malabar, FL, 1988. | MR

G. Grubb, Fractional Laplacians on domains, a development of Hörmander’s theory of μ-transmission pseudodifferential operators. Adv. Math. 268 (2015) 478–528. | DOI | MR | Zbl

D. Kinderlehrer and G. Stampacchia, An introduction to variational inequalities and their applications, In: Vol. 31 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2000). | MR | Zbl

J. Lund and K.L. Bowers, Sinc Methods for Quadrature and Differential Equations, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1992) | DOI | MR | Zbl

A.-M. Matache, T. Von Petersdorff and C. Schwab, Fast deterministic pricing of options on Lévy driven assets. ESAIM: M2AN 38 (2004) 37–71. | DOI | Numdam | MR | Zbl

R. Musina, A.I. Nazarov and K. Sreenadh, Variational inequalities for the fractional Laplacian. Potential Anal. 46 (2017) 485–498. | DOI | MR

J.-F. Rodrigues, Obstacle problems in mathematical physics, 114, Notas de Matemática [Mathematical Notes]. In: Vol. 134 ofNorth-Holland Mathematics Studies, North-Holland Publishing Co., Amsterdam (1987). | MR | Zbl

X. Ros-Oton and J. Serra, The extremal solution for the fractional Laplacian. Calc. Var. Part. Differ. Equ. 50 (2014) 723–750. | DOI | MR | Zbl

L. Schwartz, Théorie des distributions. Publications de l’Institut de Mathématique de l’Université de Strasbourg, No. IX-X. Nouvelle édition, entiérement corrigée, refondue et augmentée, Hermann, Paris (1966). | MR | Zbl

L.R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp. 54 (1990) 483–493. | DOI | MR | Zbl

R. Servadei and E. Valdinoci, Lewy-Stampacchia type estimates for variational inequalities driven by (non)local operators. Rev. Mat. Iberoam. 29 (2013) 1091–1126. | DOI | MR | Zbl

M.E. Taylor, Pseudodifferential operators, In: Vol. 34 of Princeton Mathematical Series Princeton University Press, Princeton, NJ (1981). | MR | Zbl

M.I. Višik and G.I. Èskin, Elliptic Convolution Equations in a Bounded Region and their Applications. Vol. 22 Uspehi Mat. Nauk (1967) 15–76. | MR

V.S. Vladimirov, Methods of the theory of generalized functions, In: Vol. 6 of Analytical Methods and Special Functions. Taylor & Francis, London (2002). | MR | Zbl

P. Wei, Numerical Approximation of time Dependent Fractional Diffusion with Drift: Applications to Surface Quasi-Geostrophic Dynamics and Electroconvection. Ph.D. thesis, A&M University, Texas (2019). | MR

J. Xu, Theory of Multilevel Methods. Ph.D. thesis, Cornell University, Ithaca, NY (1989). | MR

Cité par Sources :