A variational formulation for computing shape derivatives of geometric constraints along rays
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 1, pp. 181-228.

In the formulation of shape optimization problems, multiple geometric constraint functionals involve the signed distance function to the optimized shape Ω. The numerical evaluation of their shape derivatives requires to integrate some quantities along the normal rays to Ω, a challenging operation to implement, which is usually achieved thanks to the method of characteristics. The goal of the present paper is to propose an alternative, variational approach for this purpose. Our method amounts, in full generality, to compute integral quantities along the characteristic curves of a given velocity field without requiring the explicit knowledge of these curves on the spatial discretization; it rather relies on a variational problem which can be solved conveniently by the finite element method. The well-posedness of this problem is established thanks to a detailed analysis of weighted graph spaces of the advection operator β ⋅ ∇ associated to a C1 velocity field β. One novelty of our approach is the ability to handle velocity fields with possibly unbounded divergence: we do not assume div(β) ∈ L. Our working assumptions are fulfilled in the context of shape optimization of C2 domains Ω, where the velocity field β = ∇dΩ is an extension of the unit outward normal vector to the optimized shape. The efficiency of our variational method with respect to the direct integration of numerical quantities along rays is evaluated on several numerical examples. Classical albeit important implementation issues such as the calculation of a shape’s curvature and the detection of its skeleton are discussed. Finally, we demonstrate the convenience and potential of our method when it comes to enforcing maximum and minimum thickness constraints in structural shape optimization.

DOI : 10.1051/m2an/2019056
Classification : 65K10, 49Q10, 36A15
Mots-clés : Advection operator, shape and topology optimization, level set method, signed distance function, thickness constraints
@article{M2AN_2020__54_1_181_0,
     author = {Feppon, Florian and Allaire, Gr\'egoire and Dapogny, Charles},
     title = {A variational formulation for computing shape derivatives of geometric constraints along rays},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {181--228},
     publisher = {EDP-Sciences},
     volume = {54},
     number = {1},
     year = {2020},
     doi = {10.1051/m2an/2019056},
     mrnumber = {4055458},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2019056/}
}
TY  - JOUR
AU  - Feppon, Florian
AU  - Allaire, Grégoire
AU  - Dapogny, Charles
TI  - A variational formulation for computing shape derivatives of geometric constraints along rays
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2020
SP  - 181
EP  - 228
VL  - 54
IS  - 1
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2019056/
DO  - 10.1051/m2an/2019056
LA  - en
ID  - M2AN_2020__54_1_181_0
ER  - 
%0 Journal Article
%A Feppon, Florian
%A Allaire, Grégoire
%A Dapogny, Charles
%T A variational formulation for computing shape derivatives of geometric constraints along rays
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2020
%P 181-228
%V 54
%N 1
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2019056/
%R 10.1051/m2an/2019056
%G en
%F M2AN_2020__54_1_181_0
Feppon, Florian; Allaire, Grégoire; Dapogny, Charles. A variational formulation for computing shape derivatives of geometric constraints along rays. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 1, pp. 181-228. doi : 10.1051/m2an/2019056. http://www.numdam.org/articles/10.1051/m2an/2019056/

G. Allaire, In: Vol. of 58 Conception optimale de structures, Springer (2007). | MR | Zbl

G. Allaire, F. Jouve and A.-M. Toader, Structural optimization using sensitivity analysis and a level-set method. J. Comput. Phys. 194 (2004) 363–393. | DOI | MR | Zbl

G. Allaire, F. De Gournay, F. Jouve and A.-M. Toader, Structural optimization using topological and shape sensitivity via a level set method. Control Cybern. 34 (2005) 59. | MR | Zbl

G. Allaire, C. Dapogny and P. Frey, Shape optimization with a level set based mesh evolution method. Comput. Methods Appl. Mech. Eng. 282 (2014) 22–53. | DOI | MR | Zbl

G. Allaire, C. Dapogny, G. Delgado and G. Michailidis, Multi-phase structural optimization via a level set method. ESAIM: COCV 20 (2014) 576–611. | Numdam | MR | Zbl

G. Allaire, F. Jouve and G. Michailidis, Molding direction constraints in structural optimization via a level-set method. In: Variational Analysis and Aerospace Engineering. Springer (2016) 1–39. | MR

G. Allaire, F. Jouve and G. Michailidis, Thickness control in structural optimization via a level set method. Struct. Multi. Optim. 53 (2016) 1349–1382. | DOI | MR

L. Ambrosio, Geometric evolution problems, distance function and viscosity solutions. In: Calculus of Variations and Partial Differential Equations. Springer (2000) 5–93. | MR | Zbl

N. Amenta, S. Choi and R.K. Kolluri, The power crust, unions of balls, and the medial axis transform. Comput. Geom. 19 (2001) 127–153. | DOI | MR | Zbl

D. Attali, J.-D. Boissonnat and H. Edelsbrunner, Stability and computation of medial axes-a state-of-the-art report. In: Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration. Springer (2009) 109–125. | DOI | MR | Zbl

P. Azérad, Equations de Navier-Stokes en bassin peu profond. Ph.D. thesis, Université de Neuchâtel (1995).

P. Azérad and J. Pousin, Inégalité de poincaré courbe pour le traitement variationnel de l’équation de transport. C.R. Acad. Sci. Ser. 1: Math. 322 (1996) 721–727. | MR | Zbl

A. Bensalah, Une approche nouvelle de la modélisation mathématique et numérique en aéroacoustique par les équations de Goldstein et applications en aéronautique, Ph.D. thesis, Université Paris Saclay (2018).

G. Bellettini, Lecture Notes on Mean Curvature Flow: Barriers and Singular Perturbations, In Vol. 12. Springer (2014). | MR | Zbl

P. Cannarsa and P. Cardaliaguet, Representation of equilibrium solutions to the table problem of growing sandpiles. J. Eur. Math. Soc. 6 (2004) 435–464. | DOI | MR | Zbl

S. Chen, M.Y. Wang and A.Q. Liu, Shape feature control in structural topology optimization. Comput.-Aided Des. 40 (2008) 951–962. | DOI

G. Cheng, Y. Mei and X. Wang, A feature-based structural topology optimization method. In: IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials. Springer (2006) 505–514. | DOI

C. Chicone, Ordinary Differential Equations with Applications. Springer, New York (1999). | MR | Zbl

D.L. Chopp, Another look at velocity extensions in the level set method. SIAM J. Sci. Comput. 31 (2009) 3255–3273. | DOI | MR | Zbl

C. Dapogny and P. Frey, Computation of the signed distance function to a discrete contour on adapted triangulation. Calcolo 49 (2012) 193–219. | DOI | MR | Zbl

C. Dapogny, C. Dobrzynski and P. Frey, Three-dimensional adaptive domain remeshing, implicit domain meshing, and applications to free and moving boundary problems. J. Comput. Phys. 262 (2014) 358–378. | DOI | MR

C. Dapogny, R. Estevez, A. Faure and G. Michailidis, Shape and topology optimization considering anisotropic features induced by additive manufacturing processes, Hal Preprint: https://hal.archives-ouvertes.fr/hal-01660850/ (2017). | MR

C. Dapogny, A. Faure, G. Michailidis, G. Allaire, A. Couvelas and R. Estevez, Geometric constraints for shape and topology optimization in architectural design. Comput. Mech. 59 (2017) 933–965. | DOI | MR

G. David and S. Semmes, Uniform rectifiability and singular sets. Ann. Inst. Henri Poincaré (C) Non Linear Anal. 13 (1996) 383–443. | DOI | Numdam | MR | Zbl

M.C. Delfour and J.P. Zolésio, Shape analysis via distance functions. J. Funct. Anal. 123 (1994) 129–201. | DOI | MR | Zbl

M.C. Delfour and J.-P. Zolesio, Shapes and Geometries: Metrics, Analysis, Differential Calculus, and Optimization. InVol. 22. SIAM (2011). | DOI | MR | Zbl

T.K. Dey and W. Zhao, Approximate medial axis as a voronoi subcomplex.In: Proceedings of the Seventh ACM Symposium on Solid Modeling and Applications. ACM (2002) 356–366. | DOI

R.J. Diperna and P.-L. Lions, Ordinary differential equations, transport theory and sobolev spaces. Invent. Math. 98 (1989) 511–547. | DOI | MR | Zbl

D.A. Di Pietro and A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods. In Vol. 69 Springer Science & Business Media (2011). | MR | Zbl

J. Duoandikoetxea, Forty years of muckenhoupt weights. In: Function Spaces and Inequalities. Matfyzpress, Praga (2013) 23–75.

B. Erem and D.H. Brooks, Differential geometric approximation of the gradient and hessian on a triangulated manifold. In: Vol. 504(2011).

A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements. In Vol. 159. Springer Science & Business Media (2013). | MR | Zbl

W.D. Evans, Weighted sobolev spaces. Bull. London Math. Soc. 18 (1986) 220–221. | DOI

L.C. Evans and R.F. Gariepy, Measure theory and fine properties of functions. In: Studies in Advanced Mathematics. CRC Press (1992). | MR | Zbl

F. Feppon and P.F.J. Lermusiaux, A geometric approach to dynamical model order reduction. SIAM J. Matrix Anal. App. 39 (2018) 510–538. | DOI | MR

F. Feppon, G. Allaire, F. Bordeu, J. Cortial and C. Dapogny, Shape optimization of a coupled thermal fluid-structure problem in a level set mesh evolution framework. Hal Preprint: https://hal.archives-ouvertes.fr/hal-01686770/ (2018). | MR

F. Feppon, G. Allaire, and C. Dapogny, Null space gradient flows for constrained optimization with applications to shape optimization. Hal Preprint: https://hal.archives-ouvertes.fr/hal-01972915/ (2019). | Numdam | MR | Zbl

J.K. Guest, Imposing maximum length scale in topology optimization. Struct. Multi. Optim. 37 (2009) 463–473. | DOI | MR | Zbl

F. Hecht, New development in freefem++. J. Numer. Math. 20 (2013) 251–265. | MR | Zbl

A. Henrot and M. Pierre, Variation et optimisation de formes: une analyse géométrique. In Vol 48. Springer Science & Business Media (2006). | MR | Zbl

M. Jensen, Discontinuous Galerkin methods for Friedrichs systems with irregular solutions. Ph.D. thesis, University of Oxford (2005).

T. Krainer and B.W. Schulze, Weighted Sobolev Spaces, Springer (1985).

A. Kufner and B. Opic, How to define reasonably weighted sobolev spaces. Commentationes Math. Univ. Carolinae 25 (1984) 537–554. | MR | Zbl

S. Lang, Fundamentals of Differential Geometry. In Vol. 191. Springer Science & Business Media (2012). | MR | Zbl

Y.Y. Li and L. Nirenberg, The distance function to the boundary, finsler geometry, and the singular set of viscosity solutions of some hamilton-jacobi equations. Commun. Pure Appl. Math. 58 (2005) 85–146. | DOI | MR | Zbl

J. Liu and Y. Ma, A survey of manufacturing oriented topology optimization methods. Adv. Eng. Softw. 100 (2016) 161–175. | DOI

J. Luo, Z. Luo, S. Chen, L. Tong and M.Y. Wang, A new level set method for systematic design of hinge-free compliant mechanisms. Comput. Methods Appl. Mech. Eng. 198 (2008) 318–331. | DOI | Zbl

C. Mantegazza, A.C. Mennucci, Hamilton-Jacobi equations and distance functions on riemannian manifolds. Appl. Math. Optim. 47 (2003) 1–25. | DOI | MR | Zbl

M. Meyer, M. Desbrun, P. Schröder and A.H. Barr, Discrete differential-geometry operators for triangulated 2-manifolds. In: Visualization and Mathematics III. Springer (2003) 35–57. | DOI | MR | Zbl

G. Michailidis, Manufacturing constraints and multi-phase shape and topology optimization via a level-set method. Ph.D. thesis, Ecole Polytechnique (2014).

F. Murat and J. Simon, Etude de problèmes d’optimal design. Springer (1975) 54–62. | Zbl

E. Peynaud, Rayonnement sonore dans un écoulement subsonique complexe en régime harmonique: analyse et simulation numérique du couplage entre les phénomènes acoustiques et hydrodynamiques. Ph.D. thesis, Toulouse, INSA (2013).

J.C. Robinson, Infinite-dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors. In Vol. 28. Cambridge University Press, Cambridge (2001). | MR | Zbl

W. Rudin, Real and Complex Analysis. Tata McGraw-Hill Education, New York, NY (2006). | MR | Zbl

S. Rusinkiewicz, Estimating curvatures and their derivatives on triangle meshes. In: Proceedings. 2nd International Symposium on 3D Data Processing, Visualization and Transmission, 2004. 3DPVT 2004. IEEE (2004) 486–493. | DOI

J. Schropp and I. Singer, A dynamical systems approach to constrained minimization. Numer. Funct. Anal. Optim. 21 (2000) 537–551. | DOI | MR | Zbl

J.A. Sethian, A fast marching level set method for monotonically advancing fronts. Proc. Nat. Acad. Sci. 93 (1996) 1591–1595. | DOI | MR | Zbl

J. Sokolowski and J.-P. Zolésio, Introduction to shape optimization. In: Vol. 16 of Springer Series in Computational Mathematics, Springer-Verlag, Berlin (1992). | DOI | MR | Zbl

L. Tartar, An Introduction to Sobolev Spaces and Interpolation Spaces. Vol. 3. Springer Science & Business Media (2007). | MR | Zbl

B.O. Turesson, Nonlinear Potential Theory and Weighted Sobolev Spaces. Springer (2007). | MR | Zbl

M.Y. Wang, X. Wang and D. Guo, A level set method for structural topology optimization. Comput. Methods Appl. Mech. Eng. 192 (2003) 227–246. | DOI | MR | Zbl

G.H. Yoon, S. Heo and Y.Y. Kim, Minimum thickness control at various levels for topology optimization using the wavelet method. Int. J. Solids Struct. 42 (2005) 5945–5970. | DOI | Zbl

H. Zhao, A fast sweeping method for eikonal equations. Math. Comput. 74 (2005) 603–627. | DOI | MR | Zbl

Cité par Sources :