A stabilized second order exponential time differencing multistep method for thin film growth model without slope selection
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 3, pp. 727-750.

In this paper, a stabilized second order in time accurate linear exponential time differencing (ETD) scheme for the no-slope-selection thin film growth model is presented. An artificial stabilizing term Aτ 2 Δ 2 u t is added to the physical model to achieve energy stability, with ETD-based multi-step approximations and Fourier collocation spectral method applied in the time integral and spatial discretization of the evolution equation, respectively. Long time energy stability and detailed 𝓁 (0,T;𝓁 2 ) error analysis are provided based on the energy method, with a careful estimate of the aliasing error. In addition, numerical experiments are presented to demonstrate the energy decay and convergence rate.

DOI : 10.1051/m2an/2019054
Classification : 65M12, 65M70, 65Z05
Mots-clés : Epitaxial thin film growth, exponential time differencing, long time energy stability, convergence analysis, second order scheme
@article{M2AN_2020__54_3_727_0,
     author = {Chen, Wenbin and Li, Weijia and Luo, Zhiwen and Wang, Cheng and Wang, Xiaoming},
     title = {A stabilized second order exponential time differencing multistep method for thin film growth model without slope selection},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {727--750},
     publisher = {EDP-Sciences},
     volume = {54},
     number = {3},
     year = {2020},
     doi = {10.1051/m2an/2019054},
     mrnumber = {4080786},
     zbl = {1437.65149},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2019054/}
}
TY  - JOUR
AU  - Chen, Wenbin
AU  - Li, Weijia
AU  - Luo, Zhiwen
AU  - Wang, Cheng
AU  - Wang, Xiaoming
TI  - A stabilized second order exponential time differencing multistep method for thin film growth model without slope selection
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2020
SP  - 727
EP  - 750
VL  - 54
IS  - 3
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2019054/
DO  - 10.1051/m2an/2019054
LA  - en
ID  - M2AN_2020__54_3_727_0
ER  - 
%0 Journal Article
%A Chen, Wenbin
%A Li, Weijia
%A Luo, Zhiwen
%A Wang, Cheng
%A Wang, Xiaoming
%T A stabilized second order exponential time differencing multistep method for thin film growth model without slope selection
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2020
%P 727-750
%V 54
%N 3
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2019054/
%R 10.1051/m2an/2019054
%G en
%F M2AN_2020__54_3_727_0
Chen, Wenbin; Li, Weijia; Luo, Zhiwen; Wang, Cheng; Wang, Xiaoming. A stabilized second order exponential time differencing multistep method for thin film growth model without slope selection. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 3, pp. 727-750. doi : 10.1051/m2an/2019054. http://www.numdam.org/articles/10.1051/m2an/2019054/

R.A. Adams and J.J.F. Fournier, Sobolev spaces, 2nd ed. (Academic press, Singapore, 2003). | MR | Zbl

S. Agmon, Lectures on elliptic boundary value problems In: Vol. 369 of American Mathematical Soc. (2010). | MR | Zbl

B. Benesova, C. Melcher and E. Suli, An implicit midpoint spectral approximation of nonlocal Cahn-Hilliard equations. SIAM J. Numer. Anal. 52 (2014) 1466–1496. | DOI | MR

G. Beylkin, J.M. Keiser and L. Vozovoi, A new class of time discretization schemes for the solution of nonlinear PDEs. J. Comput. Phys. 147 (1998) 362–387. | DOI | MR | Zbl

C. Canuto and A. Quarteroni, Approximation results for orthogonal polynomials in sobolev spaces, Math. Comput. 38 (1982) 67–86. | DOI | MR | Zbl

C. Canuto, M.Y. Hussaini, A. Quarteroni and T.A. Zang, Spectral Methods: Fundamentals in Single Domains. Springer (2006). | DOI | MR

C. Canuto, M.Y. Hussaini, A. Quarteroni and T.A. Zang, Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics. Springer Science & Business Media (2007). | DOI | MR | Zbl

W. Chen and Y. Wang, A mixed finite element method for thin film epitaxy. Numer. Math. 122 (2012) 771–793. | DOI | MR | Zbl

W. Chen, S. Conde, C. Wang, X. Wang and S.M. Wise, A linear energy stable scheme for a thin film model without slope selection. J. Sci. Comput. 52 (2012) 546–562. | DOI | MR | Zbl

W. Chen, C. Wang, X. Wang and S.M. Wise, A linear iteration algorithm for a second-order energy stable scheme for a thin film model without slope selection. J. Sci. Comput. 59 (2014) 574–601. | DOI | MR | Zbl

K. Cheng, W. Feng, C. Wang and S.M. Wise, An energy stable fourth order finite difference scheme for the Cahn-Hilliard equation. J. Comput. Appl. Math. 362 (2019) 574–595. | DOI | MR

K. Cheng, Z. Qiao and C. Wang, A third order exponential time differencing numerical scheme for no-slope-selection epitaxial thin film model with energy stability. J. Sci. Comput. 81 (2019) 154–185. | DOI | MR

S.M. Cox and P.C. Matthews, Exponential time differencing for stiff systems. J. Comput. Phys. 176 (2002) 430–455. | DOI | MR | Zbl

G. Ehrlich and F.G. Hudda, Atomic view of surface self-diffusion: Tungsten on tungsten. J. Chem. Phys. 44 (1966) 1039–1049. | DOI

D.J. Eyre, Unconditionally gradient stable time marching the Cahn–Hilliard equation. In, Vol. 529 of Symposia BB - Computational & Mathematical Models of Microstructural Evolution (1998) 39. | MR

W. Feng, C. Wang, S.M. Wise and Z. Zhang, A second-order energy stable backward differentiation formula method for the epitaxial thin film equation with slope selection. Numer. Methods Partial Differ. Equ. 34 (2018) 1975–2007. | DOI | MR

L. Golubović, Interfacial coarsening in epitaxial growth models without slope selection. Phys. Rev. Lett. 78 (1997) 90–93. | DOI

D. Gottlieb and S.A. Orszag, Numerical Analysis of Spectral Methods: Theory and Applications. SIAM, Philadelphia 26 (1977). | MR | Zbl

S. Gottlieb and C. Wang, Stability and convergence analysis of fully discrete fourier collocation spectral method for 3-D viscous burgers’ equation. J. Sci. Comput. 53 (2012) 102–128. | DOI | MR | Zbl

M. Hochbruck and A. Ostermann, Exponential integrators. Acta Numer. 19 (2010) 209–286. | DOI | MR | Zbl

M. Hochbruck and A. Ostermann, Exponential multistep methods of Adams-type. BIT Numer. Math. 51 (2011) 889–908. | DOI | MR | Zbl

L. Ju, X. Liu and W. Leng, Compact implicit integration factor methods for a family of semilinear fourth-order parabolic equations. Discrete Cont. Dyn-B. 19 (2014) 1667–1687. | MR | Zbl

L. Ju, J. Zhang and Q. Du, Fast and accurate algorithms for simulating coarsening dynamics of Cahn-Hilliard equations. Comput. Mater. Sci. 108 (2015) 272–282. | DOI

L. Ju, J. Zhang, L. Zhu and Q. Du, Fast explicit integration factor methods for semilinear parabolic equations. J. Sci. Comput. 62 (2015) 431–455. | DOI | MR

L. Ju, X. Li, Z. Qiao and H. Zhang, Energy stability and convergence of exponential time differencing schemes for the epitaxial growth model without slope selection. Math. Comput. 87 (2018) 1859–1885. | DOI | MR

R.V. Kohn and X. Yan, Upper bound on the coarsening rate for an epitaxial growth model. Commun. Pur. Appl. Math. 56 (2003) 1549–1564. | DOI | MR | Zbl

B. Li, High-order surface relaxation versus the Ehrlich-Schwoebel effect. Nonlinearity 19 (2006) 2581–2603. | DOI | MR | Zbl

B. Li and J. Liu, Thin film epitaxy with or without slope selection. Eur. J. Appl. Math. 14 (2003) 713–743. | DOI | MR | Zbl

B. Li and J. Liu, Epitaxial growth without slope selection: energetics, coarsening, and dynamic scaling. J. Nonlinear Sci. 14 (2004) 429–451. | DOI | MR | Zbl

D. Li and Z. Qiao, On the stabilization size of semi-implicit Fourier-spectral methods for 3D Cahn-Hilliard equations. Commun. Math. Sci. 15 (2017) 1489–1506. | DOI | MR

D. Li, Z. Qiao and T. Tang, Characterizing the stabilization size for semi-implicit Fourier-spectral method to phase field equations. SIAM J. Numer. Anal. 54 (2016) 1653–1681. | DOI | MR

X. Li, Z. Qiao and H. Zhang, Convergence of a fast explicit operator splitting method for the epitaxial growth model with slope selection. SIAM J. Numer. Anal. 55 (2017) 265–285. | DOI | MR

W. Li, W. Chen, C. Wang, Y. Yan and R. He, A second order energy stable linear scheme for a thin film model without slope selection. J. Sci. Comput. 76 (2018) 1905–1937. | DOI | MR

D. Moldovan and L. Golubovic, Interfacial coarsening dynamics in epitaxial growth with slope selection. Phys. Rev. E 61 (2000) 6190–6214. | DOI

L. Nirenberg, On elliptic partial differential equations. IL Principio Di Minimo E Sue Applicazioni Alle Equazioni Funzionali 13 (1959) 1–48. | Zbl

Z. Qiao, Z. Sun and Z. Zhang, Stability and convergence of second-order schemes for the nonlinear epitaxial growth model without slope selection. Math. Comput. 84 (2015) 653–674. | DOI | MR | Zbl

Z. Qiao, T. Tang and H. Xie, Error analysis of a mixed finite element method for the molecular beam epitaxy model. SIAM J. Numer. Anal. 53 (2015) 184–205. | DOI | MR

Z. Qiao, C. Wang, S.M. Wise and Z. Zhang, Error analysis of a finite difference scheme for the epitaxial thin film model with slope selection with an improved convergence constant. Int. J. Numer. Anal. Mod. 14 (2017) 283–305. | MR

R.L. Schwoebel, Step motion on crystal surfaces II. J. Appl. Phys. 40 (1969) 614–618. | DOI

J. Shen, T. Tang and L. Wang, Spectral Methods: Algorithms, Analysis and Applications. Springer Science & Business Media 41 (2011). | MR | Zbl

J. Shen, C. Wang, X. Wang and S.M. Wise, Second-order convex splitting schemes for gradient flows with Ehrlich-Schwoebel type energy: application to thin film epitaxy. SIAM J. Numer. Anal. 50 (2012) 105–125. | DOI | MR | Zbl

J. Shen, J. Xu and J. Yang, The scalar auxiliary variable (sav) approach for gradient flows. J. Comput. Phys. 353 (2018) 407–416. | DOI | MR

C. Wang, X. Wang and S.M. Wise, Unconditionally stable schemes for equations of thin film epitaxy. Discrete Contin. Dyn. Syst. 28 (2010) 405–423. | DOI | MR | Zbl

X. Wang, L. Ju and Q. Du, Efficient and stable exponential time differencing Runge-Kutta methods for phase field elastic bending energy models. J. Comput. Phys. 316 (2016) 21–38. | DOI | MR

C. Xu and T. Tang, Stability analysis of large time-stepping methods for epitaxial growth models. SIAM J. Numer. Anal. 44 (2006) 1759–1779. | DOI | MR | Zbl

X. Yang, J. Zhao and Q. Wang, Numerical approximations for the molecular beam epitaxial growth model based on the invariant energy quadratization method. J. Comput. Phys. 333 (2017) 104–127. | DOI | MR

L. Zhu, L. Ju and W. Zhao, Fast high-order compact exponential time differencing Runge-Kutta methods for second-order semilinear parabolic equations. J. Sci. Comput. 67 (2016) 1043–1065. | DOI | MR

Cité par Sources :