Error estimates for a partially penalized immersed finite element method for elasticity interface problems
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 1, pp. 1-24.

This article is about the error analysis for a partially penalized immersed finite element (PPIFE) method designed to solve linear planar-elasticity problems whose Lamé parameters are piecewise constants with an interface-independent mesh. The bilinear form in this method contains penalties to handle the discontinuity in the global immersed finite element (IFE) functions across interface edges. We establish a stress trace inequality for IFE functions on interface elements, we employ a patch idea to derive an optimal error bound for the stress of the IFE interpolation on interface edges, and we design a suitable energy norm by which the bilinear form in this PPIFE method is coercive. These key ingredients enable us to prove that this PPIFE method converges optimally in both an energy norm and the usual L2 norm under the standard piecewise H2-regularity assumption for the exact solution. Features of the proposed PPIFE method are demonstrated with numerical examples.

DOI : 10.1051/m2an/2019051
Classification : 35R05, 65N30, 65N50, 97N50
Mots-clés : Interface problems, elasticity systems, discontinuous Lamé parameters, immersed finite element methods
@article{M2AN_2020__54_1_1_0,
     author = {Guo, Ruchi and Lin, Tao and Lin, Yanping},
     title = {Error estimates for a partially penalized immersed finite element method for elasticity interface problems},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1--24},
     publisher = {EDP-Sciences},
     volume = {54},
     number = {1},
     year = {2020},
     doi = {10.1051/m2an/2019051},
     mrnumber = {4051844},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2019051/}
}
TY  - JOUR
AU  - Guo, Ruchi
AU  - Lin, Tao
AU  - Lin, Yanping
TI  - Error estimates for a partially penalized immersed finite element method for elasticity interface problems
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2020
SP  - 1
EP  - 24
VL  - 54
IS  - 1
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2019051/
DO  - 10.1051/m2an/2019051
LA  - en
ID  - M2AN_2020__54_1_1_0
ER  - 
%0 Journal Article
%A Guo, Ruchi
%A Lin, Tao
%A Lin, Yanping
%T Error estimates for a partially penalized immersed finite element method for elasticity interface problems
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2020
%P 1-24
%V 54
%N 1
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2019051/
%R 10.1051/m2an/2019051
%G en
%F M2AN_2020__54_1_1_0
Guo, Ruchi; Lin, Tao; Lin, Yanping. Error estimates for a partially penalized immersed finite element method for elasticity interface problems. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 1, pp. 1-24. doi : 10.1051/m2an/2019051. http://www.numdam.org/articles/10.1051/m2an/2019051/

S. Adjerid, R. Guo and T. Lin, High degree immersed finite element spaces by a least squares method. Int. J. Numer. Anal. Model. 14 (2016) 604–626. | MR

G. Allaire, F. Jouve and A.-M. Toader, Structural optimization using sensitivity analysis and a level-set method. J. Comput. Phys. 194 (2004) 363–393. | DOI | MR | Zbl

H.B. Ameur, M. Burger and B. Hackl, Level set methods for geometric inverse problems in linear elasticity. Inverse Prob. 20 (2004) 673–696. | DOI | MR | Zbl

P. Angot and Z. Li, An augmented iim & preconditioning technique for jump embedded boundary conditions. Int. J. Numer. Anal. Mod. 14 (2017) 712–729. | MR

I. Babuška, The finite element method for elliptic equations with discontinuous coefficients. Comput. (Arch. Elektron. Rechnen) 5 (1970) 207–213. | MR | Zbl

I. Babuška and J.E. Osborn, Can a finite element method perform arbitrarily badly?. Math. Comput. 69 (2000) 443–462. | DOI | MR | Zbl

R. Becker, E. Burman and P. Hansbo, A Nitsche extended finite element method for incompressible elasticity with discontinuous modulus of elasticity. Comput. Methods Appl. Mech. Eng. 198 (2009) 3352–3360. | DOI | MR | Zbl

D. Braess, Finite Elements, 2nd edition. Theory, fast solvers, and applications in solid mechanics, Translated from the 1992 German edition by Larry L. Schumaker. Cambridge University Press, Cambridge (2001). | MR | Zbl

E. Burman, Ghost penalty. C. R. Math. 348 (2010) 1217–1220. | DOI | MR | Zbl

E. Burman, J. Guzmán, M.A. Sánchez and M. Sarkis, Robust flux error estimation of an unfitted nitsche method for high-contrast interface problems. IMA J. Numer. Anal. 38 (2018) 646–668. | DOI | MR | Zbl

Z. Chen and J. Zou, Finite element methods and their convergence for elliptic and parabolic interface problems. Numer. Math. 79 (1998) 175–202. | DOI | MR | Zbl

E.T. Chung, Y. Efendiev and S. Fu, Generalized multiscale finite element method for elasticity equations. GEM Int. J. Geomath. 5 (2014) 225–254. | DOI | MR | Zbl

P.G. Ciarlet, Mathematical elasticity. Three-dimensional elasticity. Vol. I. In: Vol. 20 of Studies in Mathematics and its Applications. North-Holland Publishing Co., Amsterdam (1988). | MR | Zbl

R.W. Clough and J.L. Tocher, Finite element stiffness matrices for analysis of plate bending. Matrix Methods in Structual Mechanics (1966) 515–545.

B. Cockburn, D. Schötzau and J. Wang, Discontinuous Galerkin methods for incompressible elastic materials. Comput. Methods Appl. Mech. Eng. 195 (2006) 3184–3204. | DOI | MR | Zbl

J. Dolbow, N. Moës and T. Belytschko, An extended finite element method for modeling crack growth with frictional contact. Comput. Methods Appl. Mech. Eng. 190 (2001) 6825–6846. | DOI | MR | Zbl

Y. Efendiev and T.Y. Hou, Multiscale finite element methods. Theory and applications, In: Vol. 4 of Surveys and Tutorials in the Applied Mathematical Sciences, Springer, New York, 2009. | MR | Zbl

R. Guo and T. Lin, A group of immersed finite element spaces for elliptic interface problems. IMA J. Numer. Anal. 39 (2019) 482–511. | DOI | MR

R. Guo and T. Lin, A higher degree immersed finite element method based on a cauchy extension. SIAM J. Numer. Anal. 57 (2019) 1545–1573. | DOI | MR

R. Guo and T. Lin, An immersed finite element method for elliptic interface problems in three dimensions. Preprint (2019). | arXiv | MR

R. Guo, T. Lin and Y. Lin, Approximation capabilities of the immersed finite element spaces for elasticity interface problems. Numer. Methods Partial Differ. Equ. 35 (2018) 1243–1268. | DOI | MR | Zbl

R. Guo, T. Lin and Y. Lin, A fixed mesh method with immersed finite elements for solving interface inverse problems. J. Sci. Comput. 79 (2018) 148–175. | DOI | MR | Zbl

R. Guo, T. Lin and Y. Lin, Recovering elastic inclusions by shape optimization methods with immersed finite elements. J. Comput. Phys. 404 (2020) 109123. | DOI | MR | Zbl

R. Guo, T. Lin and X. Zhang, Nonconforming immersed finite element spaces for elliptic interface problems. Comput. Math. Appl. 75 (2018) 2002–2016. | DOI | MR | Zbl

R. Guo, T. Lin and Q. Zhuang, Improved error estimation for the partially penalized immersed finite element methods for elliptic interface problems. Int. J. Numer. Anal. Model. 16 (2019) 575–589. | MR

J. Guzmán, M.A. Sánchez and M. Sarkis, A finite element method for high-contrast interface problems with error estimates independent of contrast. J. Sci. Comput. 73 (2017) 330–365. | DOI | MR

A. Hansbo and P. Hansbo, An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems. Comput. Methods Appl. Mech. Eng. 191 (2002) 5537–5552. | DOI | MR | Zbl

A. Hansbo and P. Hansbo, A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Comput. Methods Appl. Mech. Eng. 193 (2004) 3523–3540. | DOI | MR | Zbl

P. Hansbo and M.G. Larson, Discontinuous Galerkin and the Crouzeix-Raviart element: application to elasticity. ESAIM: M2AN 37 (2003) 63–72. | DOI | Numdam | MR | Zbl

X. He, T. Lin and Y. Lin, A bilinear immersed finite volume element method for the diffusion equation with discontinuous coefficient. Commun. Comput. Phys. 6 (2009) 185–202. | DOI | MR

X. He, T. Lin, Y. Lin and X. Zhang, Immersed finite element methods for parabolic equations with moving interface. Numer. Methods Partial Differ. Equ. 29 (2013) 619–646. | DOI | MR | Zbl

J. Hegemann, A. Cantarero, C.L. Richardson and J.M. Teran, An explicit update scheme for inverse parameter and interface estimation of piecewise constant coefficients in linear elliptic pdes. SIAM J. Sci. Comput. 35 (2013) A1098–A1119. | DOI | MR | Zbl

D.Y. Kwak, S. Lee and Y. Hyon, A new finite element for interface problems having robin type jump. Int. J. Numer. Anal. Mod. 14 (2017) 532–549. | MR

D. Leguillon and E. Sanchez-Palencia, Computation of Singular Solutions in Elliptic Problems and Elasticity, Wiley, New York, NY, 1987. | MR | Zbl

T. Lin and X. Zhang, Linear and bilinear immersed finite elements for planar elasticity interface problems. J. Comput. Appl. Math. 236 (2012) 4681–4699. | DOI | MR | Zbl

Z. Li, T. Lin, Y. Lin and R.C. Rogers, An immersed finite element space and its approximation capability. Numer. Methods Partial Differ. Equ. 20 (2004) 338–367. | DOI | MR | Zbl

T. Lin, Y. Lin and X. Zhang, A method of lines based on immersed finite elements for parabolic moving interface problems. Adv. Appl. Math. Mech. 5 (2013) 548–568. | DOI | MR

T. Lin, Y. Lin and X. Zhang, Partially penalized immersed finite element methods for elliptic interface problems. SIAM J. Numer. Anal. 53 (2015) 1121–1144. | DOI | MR | Zbl

M. Lin, T. Lin and H. Zhang, Error analysis of an immersed finite element method for Euler-Bernoulli beam interface problems. Int. J. Numer. Anal. Mod. 14 (2017) 822–841. | MR

J.M. Melenk and I. Babuška, The partition of unity finite element method: basic theory and applications. Comput. Methods Appl. Mech. Eng. 139 (1996) 289–314. | DOI | MR | Zbl

S. Nicaise and A.-M. Sändig, Transmission problems for the laplace and elasticity operators: regularity and boundary integral formulation. Math. Models Methods Appl. Sci. 9 (1999) 855–898. | DOI | MR | Zbl

S.C. Reddy and L.N. Trefethen, Stability of the method of lines. Numer. Math. 62 (1992) 235–267. | DOI | MR | Zbl

X. Ren and J. Wei, On a two-dimensional elliptic problem with large exponent in nonlinearity. Trans. Am. Math. Soc. 343 (1994) 749–763. | DOI | MR | Zbl

B. Rivière, Discontinuous Galerkin methods for solving elliptic and parabolic equations. Theory and implementation. In: Vol. 35 of Frontiers in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2008). | MR | Zbl

J. Sokolowski and J.-P. Zolésio, Introduction to shape optimization: shape sensitivity analysis, In: Vol. 16 of Springer Series in Computational Mathematics. Springer (1992). | MR | Zbl

N. Sukumar, D.L. Chopp, N. Moës and T. Belytschko, Modeling holes and inclusions by level sets in the extended finite-element method. Comput. Methods Appl. Mech. Eng. 190 (2001) 6183–6200. | DOI | MR | Zbl

N. Sukumar, Z.Y. Huang, J.H. Prévost and Z. Suo, Partition of unity enrichment for bimaterial interface cracks. Int. J. Numer. Methods Eng. 59 (2004) 1075–1102. | DOI | Zbl

M.Y. Wang, X. Wang and D. Guo, A level set method for structural topology optimization. Comput. Methods Appl. Mech. Eng. 192 (2003) 227–246. | DOI | MR | Zbl

T. Warburton and J.S. Hesthaven, On the constants in h p -finite element trace inverse inequalities. Comput. Methods Appl. Mech. Eng. 192 (2003) 2765–2773. | DOI | MR | Zbl

T.P. Wihler, Locking-free adaptive discontinuous Galerkin FEM for linear elasticity problems. Math. Comput. 75 (2006) 1087–1102. | DOI | MR | Zbl

X. Yang. Immersed interface method for elasticity problems with interfaces. Ph.D, Ph.D. thesis, North Carolina State University (2004). | MR

X. Yang, B. Li and Z. Li, The immersed interface method for elasticity problems with interfaces. Progress in partial differential equations (Pullman, WA, 2002). Dyn. Contin. Discrete Impuls. Syst. Ser. Math. Anal. 10 (2003) 783–808. | MR | Zbl

H. Zhang, T. Lin and Y. Lin, Linear and quadratic immersed finite element methods for the multi-layer porous wall model for coronary drug-eluting stents. Int. J. Numer. Anal. Mod. 15 (2018) 48–73. | MR

Cité par Sources :