Exponentially convergent non overlapping domain decomposition methods for the Helmholtz equation
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 3, pp. 775-810.

In this paper, we develop in a general framework a non overlapping Domain Decomposition Method that is proven to be well-posed and converges exponentially fast, provided that specific transmission operators are used. These operators are necessarily non local and we provide a class of such operators in the form of integral operators. To reduce the numerical cost of these integral operators, we show that a truncation process can be applied that preserves all the properties leading to an exponentially fast convergent method. A modal analysis is performed on a separable geometry to illustrate the theoretical properties of the method and we exhibit an optimization process to further reduce the convergence rate of the algorithm.

DOI : 10.1051/m2an/2019050
Classification : 65N55, 65N12, 58G15, 31A10, 35P15
Mots-clés : Domain decomposition methods, exponentially fast convergent methods, integral operators, norms of fractional order Sobolev spaces, pseudo-differential operators
@article{M2AN_2020__54_3_775_0,
     author = {Collino, Francis and Joly, Patrick and Lecouvez, Matthieu},
     title = {Exponentially convergent non overlapping domain decomposition methods for the {Helmholtz} equation},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {775--810},
     publisher = {EDP-Sciences},
     volume = {54},
     number = {3},
     year = {2020},
     doi = {10.1051/m2an/2019050},
     mrnumber = {4080785},
     zbl = {1437.65219},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2019050/}
}
TY  - JOUR
AU  - Collino, Francis
AU  - Joly, Patrick
AU  - Lecouvez, Matthieu
TI  - Exponentially convergent non overlapping domain decomposition methods for the Helmholtz equation
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2020
SP  - 775
EP  - 810
VL  - 54
IS  - 3
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2019050/
DO  - 10.1051/m2an/2019050
LA  - en
ID  - M2AN_2020__54_3_775_0
ER  - 
%0 Journal Article
%A Collino, Francis
%A Joly, Patrick
%A Lecouvez, Matthieu
%T Exponentially convergent non overlapping domain decomposition methods for the Helmholtz equation
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2020
%P 775-810
%V 54
%N 3
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2019050/
%R 10.1051/m2an/2019050
%G en
%F M2AN_2020__54_3_775_0
Collino, Francis; Joly, Patrick; Lecouvez, Matthieu. Exponentially convergent non overlapping domain decomposition methods for the Helmholtz equation. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 3, pp. 775-810. doi : 10.1051/m2an/2019050. http://www.numdam.org/articles/10.1051/m2an/2019050/

R.A. Adams and J.J.F. Fournier, Sobolev spaces, In: Vol. 140 of Pure and Applied Mathematics. Elsevier Science (2003). | MR | Zbl

J.M. Ball, Y. Capdeboscq and B.T. Xiao, On uniqueness for time harmonic anisotropic Maxwell’s equations with piecewise regular coefficients. Math. Models Methods Appl. Sci. 22 (2012) 1–9. | MR | Zbl

Y. Boubendir, X. Antoine and C. Geuzaine, A quasi-optimal non-overlapping domain decomposition algorithm for the Helmholtz equation. J. Comput. Phys. 231 (2012) 262–280. | DOI | MR | Zbl

Y. Boubendir, C. Jerez-Hanckes, C. Pérez-Arancibia and C. Turc, Domain Decomposition Methods based on quasi-optimal transmission operators for the solution of Helmholtz transmission problems. Preprint (2017) | arXiv

F. Collino, S. Ghanemi and P. Joly, Domain decomposition method for harmonic wave propagation: a general presentation. Comput. Methods Appl. Math. 184 (2000) 171–211. | MR | Zbl

F. Demengel and G. Demengel, Functional Spaces for the Theory of Elliptic Partial Differential Equations. Springer-Verlag, London (2012). | DOI | MR | Zbl

B. Després, Domain decomposition method and the Helmholtz problem (Part II)In: Second international conference on mathematical and numerical aspects of wave propagation. SIAM (1993) 197–206. | MR | Zbl

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker’s guide to the fractional sobolev spaces. Preprint arXiv:1104.4345 (2011). | MR | Zbl

M.J. Gander and H. Zhang, A Class of Iterative Solvers for the Helmholtz Equation: Factorizations, Sweeping Preconditioners, Source Transfer, Single Layer Potentials, Polarized Traces, and Optimized Schwarz Methods, Preprint (2016). | arXiv | Zbl

M. Gander, L. Halpern and F. Magoulès, An optimized Schwarz method with two-sided Robin transmission conditions for the Helmholtz equation. Int. J. Numer. Methods Fluids 55 (2007) 163–175. | DOI | MR | Zbl

M. Gander, F. Magoulès and F. Nataf, Optimized Schwarz methods without overlap for the Helmholtz equation. SIAM J. Sci. Comput. 24 (2002) 38–60. | DOI | MR | Zbl

P. Grisvard, Elliptic Problems in Nonsmooth Domains. Society for Industrial and Applied Mathematics (2011). | MR | Zbl

S.P. Han, A globally convergent method for nonlinear programming. J. Optim. Theory and Appl. 22 (1977) 297–309. | DOI | MR | Zbl

P. Joly, F. Collino, M. Lecouvez and B. Stupfel, Quasi-local transmission conditions for non-overlapping domain decomposition methods for the helmholtz equation. C.R. Phys. 4310 (2014) 385–478.

M. Lecouvez, Méthodes itératives de décomposition de domaine sans recouvrement avec convergence géométrique pour l’équation de Helmholtz, Ph.D. thesis, Mathématiques appliquées Palaiseau, Ecole polytechnique, Thèse de doctorat dirigée par Joly Patrick (2015).

W. Mclean, Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press (2000). | MR | Zbl

J.-C. Nedelec, Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems. Springer-Verlag (2001). | DOI | MR | Zbl

Z. Peng, V. Rawat and J.-F. Lee, One way domain decomposition method with second order transmission conditions for solving electromagnetic wave problems, J. Comput. Phys. 229 (2010) 1181–1197. | DOI | MR | Zbl

M.J.D. Powell, A fast algorithm for nonlinearly constrained optimization calculations, edited by G.A. Watson. In: Numerical Analysis, Vol. 630 of Lecture Notes in Mathematics. Springer, Berlin Heidelberg (1978) 144–157. | DOI | MR | Zbl

E.M. Stein, Singular integrals and differentiability properties of functions. In Princeton mathematical series. Princeton University Press (1970). | MR | Zbl

O. Steinbach and M. Windisch, Stable boundary element domain decomposition methods for the helmholtz equation. Numer. Mathematik 118 (2011) 171–195. | DOI | MR | Zbl

L.N. Trefethen and L. Halpern, Well-posedness of one-way wave equations and absorbing boundary conditions, Math. Computation 47 (1986) 421–435. | DOI | MR | Zbl

M. Vouvakis, K. Zhao, S.-M. Seo and J.-F. Lee, A domain decomposition approach for non-conformal couplings between finite and boundary elements for unbounded electromagnetic problems in 3 . J. Comput. Phys. 225 (2007) 975–994. | DOI | MR | Zbl

Cité par Sources :