A posteriori error estimates for Darcy’s problem coupled with the heat equation
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 6, pp. 2121-2159.

This work derives a posteriori error estimates, in two and three dimensions, for the heat equation coupled with Darcy’s law by a nonlinear viscosity depending on the temperature. We introduce two variational formulations and discretize them by finite element methods. We prove optimal a posteriori errors with two types of computable error indicators. The first one is linked to the linearization and the second one to the discretization. Then we prove upper and lower error bounds under regularity assumptions on the solutions. Finally, numerical computations are performed to show the effectiveness of the error indicators.

DOI : 10.1051/m2an/2019049
Classification : 65N15, 74S05
Mots-clés : Nonlinear Darcy’s equations, heat equation, finite element method, error indicators, residual a posteriori error estimates
Dib, Séréna 1 ; Girault, Vivette 1 ; Hecht, Frédéric 1 ; Sayah, Toni 1

1
@article{M2AN_2019__53_6_2121_0,
     author = {Dib, S\'er\'ena and Girault, Vivette and Hecht, Fr\'ed\'eric and Sayah, Toni},
     title = {A posteriori error estimates for {Darcy{\textquoteright}s} problem coupled with the heat equation},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {2121--2159},
     publisher = {EDP-Sciences},
     volume = {53},
     number = {6},
     year = {2019},
     doi = {10.1051/m2an/2019049},
     mrnumber = {4041519},
     zbl = {1434.65226},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2019049/}
}
TY  - JOUR
AU  - Dib, Séréna
AU  - Girault, Vivette
AU  - Hecht, Frédéric
AU  - Sayah, Toni
TI  - A posteriori error estimates for Darcy’s problem coupled with the heat equation
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2019
SP  - 2121
EP  - 2159
VL  - 53
IS  - 6
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2019049/
DO  - 10.1051/m2an/2019049
LA  - en
ID  - M2AN_2019__53_6_2121_0
ER  - 
%0 Journal Article
%A Dib, Séréna
%A Girault, Vivette
%A Hecht, Frédéric
%A Sayah, Toni
%T A posteriori error estimates for Darcy’s problem coupled with the heat equation
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2019
%P 2121-2159
%V 53
%N 6
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2019049/
%R 10.1051/m2an/2019049
%G en
%F M2AN_2019__53_6_2121_0
Dib, Séréna; Girault, Vivette; Hecht, Frédéric; Sayah, Toni. A posteriori error estimates for Darcy’s problem coupled with the heat equation. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 6, pp. 2121-2159. doi : 10.1051/m2an/2019049. http://www.numdam.org/articles/10.1051/m2an/2019049/

R.A. Adams and J.J. Fournier, Sobolev spaces. In: Vol. 140 of Pure and Applied Mathematics. Academic Press, New York, London (2003). | MR | Zbl

A. Alonso, Error estimators for a mixed method. Numer. Math. 74 (1996) 385–395. | DOI | MR | Zbl

I. Babuška and W.C. Rheinboldt, Error estimates for adaptive finite element computations. SIAM J. Numer. Anal. 15 (1978) 736–754. | DOI | MR | Zbl

C. Bernardi and V. Girault, A local regularisation operation for triangular and quadrilateral finite elements. SIAM J. Numer. Anal. 35 (1998) 1893–1916. | DOI | MR | Zbl

C. Bernardi, F. Hecht and R. Verfürth, A finite element discretization of the three-dimensional Navier-Stokes equations with mixed boundary conditions. ESAIM: M2AN 43 (2009) 185–1201. | DOI | Numdam | MR | Zbl

C. Bernardi, J. Dakroub, G. Mansour and T. Sayah, A posteriori analysis of iterative algorithms for Navier-Stokes problem. ESAIM: M2AN 50 (2016) 1035–1055. | DOI | Numdam | MR | Zbl

C. Bernardi, S. Dib, V. Girault, F. Hecht, F. Murat and T. Sayah, Finite element methods for Darcy’s problem coupled with the heat equation. Numer. Math. 139 (2018) 315–348. | DOI | MR | Zbl

D. Braess and R. Verfürth, A posteriori error estimators for the Raviart-Thomas element. SIAM J. Numer. Anal. 33 (1996) 2431–2444. | DOI | MR | Zbl

F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York, NY 15 (1991). | DOI | MR | Zbl

C. Carstensen, A posteriori error estimate for the mixed finite element method. Math. Comput. 66 (1997) 465–476. | DOI | MR | Zbl

W. Chen and Y. Wang, A posteriori estimate for the H(div) conforming mixed finite element for the coupled Darcy-Stokes system. J. Comput. Appl. Math. 255 (2014) 502–516. | DOI | MR | Zbl

P.G. Ciarlet, Basic error estimates for elliptic problems. In: Vol. II of Handbook of Numerical Analysis. North-Holland, Amsterdam (1991) 17–351. | MR | Zbl

P. Clément, Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 9 (1975) 77–84. | Numdam | MR | Zbl

E. Colmenares, G.N. Gatica and R.Y. Oyarzua, A posteriori error analysis of an augmented mixed-primal formulation for the stationary boussinesq model. Calcolo 54 (2017) 1055–1095. | DOI | MR | Zbl

E. Colmenares, G.N. Gatica and R.Y. Oyarzua, A posteriori error analysis of an augmented fully-mixed formulation for the stationary boussinesq model. Comput. Math. App. 77 (2019) 693–714. | MR | Zbl

A. El Akkad, A. El Khalfi and N. Guessous, An a posteriori estimate for mixed finite element approximations of the Navier-Stokes equations. J. Korean Math. Soc. 48 (2011) 529–550. | DOI | MR | Zbl

V. Ervin, W. Layton and J. Maubach, A posteriori error estimators for a two-level finite element method for the Navier-Stokes equations. I.C.M.A. Tech. Report, Univ. of Pittsburgh (1995). | MR | Zbl

G.N. Gatica, R. Ruiz-Baier and G. Tierra, A mixed finite element method for Darcy’s equations with pressure dependent porosity. Math. Comput. 85 (2016) 1–33. | DOI | MR | Zbl

V. Girault and P.-A. Raviart, Finite element methods for Navier-Stokes equations. In: Vol. 5of Springer Series in Computational Mathematics. Springer-Verlag, Berlin (1986) Theory and algorithms. | DOI | MR | Zbl

F. Hecht, New development in FreeFem++. J. Numer. Math. 20 (2012) 251–266. | DOI | MR | Zbl

H. Jin and S. Prudhomme, A posteriori error estimation of steady-state finite element solutions of the Navier-Stokes equations by a subdomain residual method Comput. Methods Appl. Mech. Eng. 159 (1998) 19–48. | DOI | MR | Zbl

V. John, Residual a posteriori error estimates for two-level finite element methods for the Navier-Stokes equations. Appl. Numer. Math. 37 (2001) 503–518. | DOI | MR | Zbl

C. Lovadina and R. Stenberg, Energy norm a posteriori error estimates for mixed finite element methods. Math. Comput. 75 (2006) 1659–1674. | DOI | MR | Zbl

J. Nečas, Les méthodes directes en théorie des équations elliptiques. Masson, Paris (1967). | MR | Zbl

P.-A. Raviart and J.-M. Thomas, A mixed finite element method for second order elliptic problems (rome, 1975). In: Mathematical Aspects of Finite Element Methods. Springer, Berlin (1977) 292–315. | DOI | MR | Zbl

J.E. Roberts and J.-M. Thomas, Mixed and hybrid methods. In Vol II of Handbook of Numerical Analysis, Finite Element Methods (Part I). North-Holland, Amsterdam (1991) 523–637. | DOI | MR | Zbl

L.R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54 (1990) 483–493. | DOI | MR | Zbl

R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Mathematics. Wiley and Teubner, New York, NY (1996). | Zbl

Cité par Sources :