This work derives a posteriori error estimates, in two and three dimensions, for the heat equation coupled with Darcy’s law by a nonlinear viscosity depending on the temperature. We introduce two variational formulations and discretize them by finite element methods. We prove optimal a posteriori errors with two types of computable error indicators. The first one is linked to the linearization and the second one to the discretization. Then we prove upper and lower error bounds under regularity assumptions on the solutions. Finally, numerical computations are performed to show the effectiveness of the error indicators.
Mots-clés : Nonlinear Darcy’s equations, heat equation, finite element method, error indicators, residual a posteriori error estimates
@article{M2AN_2019__53_6_2121_0, author = {Dib, S\'er\'ena and Girault, Vivette and Hecht, Fr\'ed\'eric and Sayah, Toni}, title = {A posteriori error estimates for {Darcy{\textquoteright}s} problem coupled with the heat equation}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {2121--2159}, publisher = {EDP-Sciences}, volume = {53}, number = {6}, year = {2019}, doi = {10.1051/m2an/2019049}, mrnumber = {4041519}, zbl = {1434.65226}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2019049/} }
TY - JOUR AU - Dib, Séréna AU - Girault, Vivette AU - Hecht, Frédéric AU - Sayah, Toni TI - A posteriori error estimates for Darcy’s problem coupled with the heat equation JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2019 SP - 2121 EP - 2159 VL - 53 IS - 6 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2019049/ DO - 10.1051/m2an/2019049 LA - en ID - M2AN_2019__53_6_2121_0 ER -
%0 Journal Article %A Dib, Séréna %A Girault, Vivette %A Hecht, Frédéric %A Sayah, Toni %T A posteriori error estimates for Darcy’s problem coupled with the heat equation %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2019 %P 2121-2159 %V 53 %N 6 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2019049/ %R 10.1051/m2an/2019049 %G en %F M2AN_2019__53_6_2121_0
Dib, Séréna; Girault, Vivette; Hecht, Frédéric; Sayah, Toni. A posteriori error estimates for Darcy’s problem coupled with the heat equation. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 6, pp. 2121-2159. doi : 10.1051/m2an/2019049. http://www.numdam.org/articles/10.1051/m2an/2019049/
Sobolev spaces. In: Vol. 140 of Pure and Applied Mathematics. Academic Press, New York, London (2003). | MR | Zbl
and ,Error estimators for a mixed method. Numer. Math. 74 (1996) 385–395. | DOI | MR | Zbl
,Error estimates for adaptive finite element computations. SIAM J. Numer. Anal. 15 (1978) 736–754. | DOI | MR | Zbl
and ,A local regularisation operation for triangular and quadrilateral finite elements. SIAM J. Numer. Anal. 35 (1998) 1893–1916. | DOI | MR | Zbl
and ,A finite element discretization of the three-dimensional Navier-Stokes equations with mixed boundary conditions. ESAIM: M2AN 43 (2009) 185–1201. | DOI | Numdam | MR | Zbl
, and ,A posteriori analysis of iterative algorithms for Navier-Stokes problem. ESAIM: M2AN 50 (2016) 1035–1055. | DOI | Numdam | MR | Zbl
, , and ,Finite element methods for Darcy’s problem coupled with the heat equation. Numer. Math. 139 (2018) 315–348. | DOI | MR | Zbl
, , , , and ,A posteriori error estimators for the Raviart-Thomas element. SIAM J. Numer. Anal. 33 (1996) 2431–2444. | DOI | MR | Zbl
and ,Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York, NY 15 (1991). | DOI | MR | Zbl
and ,A posteriori error estimate for the mixed finite element method. Math. Comput. 66 (1997) 465–476. | DOI | MR | Zbl
,A posteriori estimate for the conforming mixed finite element for the coupled Darcy-Stokes system. J. Comput. Appl. Math. 255 (2014) 502–516. | DOI | MR | Zbl
and ,Basic error estimates for elliptic problems. In: Vol. II of Handbook of Numerical Analysis. North-Holland, Amsterdam (1991) 17–351. | MR | Zbl
,Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 9 (1975) 77–84. | Numdam | MR | Zbl
,A posteriori error analysis of an augmented mixed-primal formulation for the stationary boussinesq model. Calcolo 54 (2017) 1055–1095. | DOI | MR | Zbl
, and ,A posteriori error analysis of an augmented fully-mixed formulation for the stationary boussinesq model. Comput. Math. App. 77 (2019) 693–714. | MR | Zbl
, and ,An a posteriori estimate for mixed finite element approximations of the Navier-Stokes equations. J. Korean Math. Soc. 48 (2011) 529–550. | DOI | MR | Zbl
, and ,A posteriori error estimators for a two-level finite element method for the Navier-Stokes equations. I.C.M.A. Tech. Report, Univ. of Pittsburgh (1995). | MR | Zbl
, and ,A mixed finite element method for Darcy’s equations with pressure dependent porosity. Math. Comput. 85 (2016) 1–33. | DOI | MR | Zbl
, and ,Finite element methods for Navier-Stokes equations. In: Vol. 5of Springer Series in Computational Mathematics. Springer-Verlag, Berlin (1986) Theory and algorithms. | DOI | MR | Zbl
and ,New development in FreeFem++. J. Numer. Math. 20 (2012) 251–266. | DOI | MR | Zbl
,Comput. Methods Appl. Mech. Eng. 159 (1998) 19–48. | DOI | MR | Zbl
and , A posteriori error estimation of steady-state finite element solutions of the Navier-Stokes equations by a subdomain residual methodResidual a posteriori error estimates for two-level finite element methods for the Navier-Stokes equations. Appl. Numer. Math. 37 (2001) 503–518. | DOI | MR | Zbl
,Energy norm a posteriori error estimates for mixed finite element methods. Math. Comput. 75 (2006) 1659–1674. | DOI | MR | Zbl
and ,Les méthodes directes en théorie des équations elliptiques. Masson, Paris (1967). | MR | Zbl
,A mixed finite element method for second order elliptic problems (rome, 1975). In: Mathematical Aspects of Finite Element Methods. Springer, Berlin (1977) 292–315. | DOI | MR | Zbl
and ,Mixed and hybrid methods. In Vol II of Handbook of Numerical Analysis, Finite Element Methods (Part I). North-Holland, Amsterdam (1991) 523–637. | DOI | MR | Zbl
and ,Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54 (1990) 483–493. | DOI | MR | Zbl
and ,A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Mathematics. Wiley and Teubner, New York, NY (1996). | Zbl
,Cité par Sources :