Recovered finite element methods on polygonal and polyhedral meshes
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 4, pp. 1309-1337.

Recovered Finite Element Methods (R-FEM) have been recently introduced in Georgoulis and Pryer [Comput. Methods Appl. Mech. Eng. 332 (2018) 303–324]. for meshes consisting of simplicial and/or box-type elements. Here, utilising the flexibility of the R-FEM framework, we extend their definition to polygonal and polyhedral meshes in two and three spatial dimensions, respectively. An attractive feature of this framework is its ability to produce arbitrary order polynomial conforming discretizations, yet involving only as many degrees of freedom as discontinuous Galerkin methods over general polygonal/polyhedral meshes with potentially many faces per element. A priori error bounds are shown for general linear, possibly degenerate, second order advection-diffusion-reaction boundary value problems. A series of numerical experiments highlight the good practical performance of the proposed numerical framework.

DOI : 10.1051/m2an/2019047
Classification : 65N30, 65N50, 65N55
Mots-clés : Recovered finite element method, polygonal and polyhedral meshes, $$ analysis, PDEs with non-negative characteristic form
@article{M2AN_2020__54_4_1309_0,
     author = {Dong, Zhaonan and Georgoulis, Emmanuil H. and Pryer, Tristan},
     title = {Recovered finite element methods on polygonal and polyhedral meshes},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1309--1337},
     publisher = {EDP-Sciences},
     volume = {54},
     number = {4},
     year = {2020},
     doi = {10.1051/m2an/2019047},
     mrnumber = {4113053},
     zbl = {1446.65165},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2019047/}
}
TY  - JOUR
AU  - Dong, Zhaonan
AU  - Georgoulis, Emmanuil H.
AU  - Pryer, Tristan
TI  - Recovered finite element methods on polygonal and polyhedral meshes
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2020
SP  - 1309
EP  - 1337
VL  - 54
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2019047/
DO  - 10.1051/m2an/2019047
LA  - en
ID  - M2AN_2020__54_4_1309_0
ER  - 
%0 Journal Article
%A Dong, Zhaonan
%A Georgoulis, Emmanuil H.
%A Pryer, Tristan
%T Recovered finite element methods on polygonal and polyhedral meshes
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2020
%P 1309-1337
%V 54
%N 4
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2019047/
%R 10.1051/m2an/2019047
%G en
%F M2AN_2020__54_4_1309_0
Dong, Zhaonan; Georgoulis, Emmanuil H.; Pryer, Tristan. Recovered finite element methods on polygonal and polyhedral meshes. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 4, pp. 1309-1337. doi : 10.1051/m2an/2019047. http://www.numdam.org/articles/10.1051/m2an/2019047/

A.V. Astaneh, F. Fuentes, J. Mora and L. Demkowicz, High-order polygonal discontinuous Petrov-Galerkin (PolyDPG) methods using ultraweak formulations. Comput. Methods Appl. Mech. Eng. 332 (2018) 686–711. | DOI | MR

G.R. Barrenechea, E.H. Georgoulis and T. Pryer, Recovered mixed finite element methods. In preparation (2020).

L. Beirão Da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. Marini and A. Russo, Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23 (2013) 199–214. | DOI | MR | Zbl

L. Beirão Da Veiga, K. Lipnikov and G. Manzini, The Mimetic Finite Difference Method for Elliptic Problems. In: Vol. 11 of MS&A. Modeling, Simulation and Applications, Springer, Cham (2014). | MR | Zbl

L. Beirão Da Veiga, C. Lovadina and A. Russo, Stability analysis for the virtual element method. Math. Models Methods Appl. Sci. 27 (2017) 2557–2594. | DOI | MR

S.C. Brenner and L.-Y. Sung, C 0 interior penalty methods for fourth order elliptic boundary value problems on polygonal domains. J. Sci. Comput. 22, 23 (2005) 83–118. | DOI | MR | Zbl

S.C. Brenner and L.-Y. Sung, Virtual element methods on meshes with small edges or faces. Math. Models Methods Appl. Sci. 28 (2018) 1291–1336. | DOI | MR

E. Burman, A unified analysis for conforming and nonconforming stabilized finite element methods using interior penalty. SIAM J. Numer. Anal. 43 (2005) 2012–2033. | DOI | MR | Zbl

E. Burman and P. Hansbo, Edge stabilization for Galerkin approximations of convection–diffusion–reaction problems. Comput. Methods Appl. Mech. Eng. 193 (2004) 1437–1453. | DOI | MR | Zbl

A. Cangiani, E.H. Georgoulis and P. Houston, h p -version discontinuous Galerkin methods on polygonal and polyhedral meshes. Math. Models Methods Appl. Sci. 24 (2014) 2009–2041. | DOI | MR | Zbl

A. Cangiani, Z. Dong, E.H. Georgoulis and P. Houston, h p -version discontinuous Galerkin methods for advection-diffusion-reaction problems on polytopic meshes. ESAIM: M2AN 50 (2016) 699–725. | DOI | Numdam | MR

A. Cangiani, Z. Dong, E.H. Georgoulis and P. Houston, h p -Version Discontinuous Galerkin Methods on Polygonal and Polyhedral Meshes. Springer (2017). | DOI | MR

A. Cangiani, Z. Dong and E.H. Georgoulis, h p -version space-time discontinuous Galerkin methods for parabolic problems on prismatic meshes. SIAM J. Sci. Comput. 39 (2017) A1251–A1279. | DOI | MR

A. Cangiani, G. Manzini and O.J. Sutton, Conforming and nonconforming virtual element methods for elliptic problems. IMA J. Numer. Anal. 37 (2017) 1317–1354. | MR

P.G. Ciarlet, The Finite Element Method for Elliptic Problems. In: Vol. 40 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2002). | MR | Zbl

P. Clément, Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 9 (1975) 77–84. | Numdam | MR | Zbl

B. Cockburn, Continuous dependence and error estimation for viscosity methods. Acta Numer. 12 (2003) 127–180. | DOI | MR | Zbl

B. Cockburn, J. Gopalakrishnan and R. Lazarov, Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47 (2009) 1319–1365. | DOI | MR | Zbl

B. Cockburn, D. Di Pietro and A. Ern, Bridging the hybrid high-order and hybridizable discontinuous Galerkin methods. ESAIM: M2AN 50 (2016) 635–650. | DOI | Numdam | MR

D. Di Pietro and A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods. In: Vol. 69 of Mathématiques & Applications (Berlin) [Mathematics & Applications]. Springer, Heidelberg (2012). | DOI | MR | Zbl

D.A. Di Pietro and A. Ern, A hybrid high-order locking-free method for linear elasticity on general meshes. Comput. Methods Appl. Mech. Eng. 283 (2015) 1–21. | DOI | MR

J. Douglas Jr and T. Dupont, Interior penalty procedures for elliptic and parabolic Galerkin methods. In: Vol. 58 of Lecture Notes in Physics (1976) 207–216. | DOI | MR

E.H. Georgoulis and A. Lasis, A note on the design of h p -version interior penalty discontinuous Galerkin finite element methods for degenerate problems. IMA J. Numer. Anal. 26 (2006) 381–390. | DOI | MR | Zbl

E.H. Georgoulis and T. Pryer, Recovered finite element methods. Comput. Methods Appl. Mech. Eng. 332 (2018) 303–324. | DOI | MR

E.H. Georgoulis, P. Houston and J. Virtanen, An a posteriori error indicator for discontinuous Galerkin approximations of fourth-order elliptic problems. IMA J. Numer. Anal. 31 (2011) 281–298. | DOI | MR | Zbl

E. Georgoulis, C. Makridakis, T. Pryer, Babuška-Osborn techniques in discontinuous Galerkin methods: L 2 -norm error estimates for unstructured meshes. Preprint (2017). | arXiv

J. Giesselmann, C. Makridakis and T. Pryer, A posteriori analysis of discontinuous Galerkin schemes for systems of hyperbolic conservation laws. SIAM J. Numer. Anal. 53 (2015) 1280–1303. | DOI | MR

W. Hackbusch and S. Sauter, Composite finite elements for the approximation of PDEs on domains with complicated micro-structures. Numer. Math. 75 (1997) 447–472. | DOI | MR | Zbl

P. Houston and E. Süli, Stabilised h p -finite element approximation of partial differential equations with nonnegative characteristic form. Computing 66 (2001) 99–119. | DOI | MR | Zbl

P. Houston, C. Schwab and E. Süli, Stabilized h p -finite element methods for first-order hyperbolic problems. SIAM J. Numer. Anal. 37 (2000) 1618–1643. | DOI | MR | Zbl

P. Houston, C. Schwab and E. Süli, Discontinuous h p -finite element methods for advection-diffusion-reaction problems. SIAM J. Numer. Anal. 39 (2002) 2133–2163. | DOI | MR | Zbl

O.A. Karakashian and F. Pascal, Convergence of adaptive discontinuous Galerkin approximations of second-order elliptic problems. SIAM J. Numer. Anal. 45 (2007) 641–665. | DOI | MR | Zbl

L. Mu, J. Wang and X. Ye, Weak Galerkin finite element methods for the biharmonic equation on polytopal meshes. Numer. Methods Part. Differ. Equ. 30 (2014) 1003–1029. | DOI | MR | Zbl

J. Nitsche, über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Collection of articles dedicated to Lothar Collatz on his sixtieth birthday. Abh. Math. Sem. Univ. Hamburg 36 (1971) 9–15. | DOI | MR | Zbl

O. Oleinik and E. Radkevič, Second Order Equations with Nonnegative Characteristic Form. American Mathematical Society, 1973. | DOI | MR | Zbl

P. Oswald, On a BPX-preconditioner for # elements. Computing 51 (1993) 125–133. | DOI | MR | Zbl

D. Peterseim and S.A. Sauter, The composite mini element-coarse mesh computation of Stokes flows on complicated domains. SIAM J. Numer. Anal. 46 (2008) 3181–3206. | DOI | MR | Zbl

W. Reed and T. Hill, Triangular mesh methods for the neutron transport equation. Technical Report LA-UR-73-479, Los Alamos Scientific Laboratory (1973).

S. Rjasanow, S. Weißer, Higher order BEM-based FEM on polygonal meshes. SIAM J. Numer. Anal. 50 (2012) 2357–2378. | DOI | MR | Zbl

L.R. Scott, S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54 (1990) 483–493. | DOI | MR | Zbl

N. Sukumar and A. Tabarraei, Conforming polygonal finite elements. Int. J. Numer. Methods Eng. 61 (2004) 2045–2066. | DOI | MR | Zbl

C. Talischi, G. Paulino, A. Pereira and I. Menezes, PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab. Struct. Multidisc. Optim. 45 (2012) 309–328. | DOI | MR | Zbl

A. Veeser and P. Zanotti, Quasi-optimal nonconforming methods for symmetric elliptic problems. III – discontinuous Galerkin and other interior penalty methods. SIAM J. Numer. Anal. 56 (2018) 2871–2894. | DOI | MR

Cité par Sources :