Recovered Finite Element Methods (R-FEM) have been recently introduced in Georgoulis and Pryer [Comput. Methods Appl. Mech. Eng. 332 (2018) 303–324]. for meshes consisting of simplicial and/or box-type elements. Here, utilising the flexibility of the R-FEM framework, we extend their definition to polygonal and polyhedral meshes in two and three spatial dimensions, respectively. An attractive feature of this framework is its ability to produce arbitrary order polynomial conforming discretizations, yet involving only as many degrees of freedom as discontinuous Galerkin methods over general polygonal/polyhedral meshes with potentially many faces per element. A priori error bounds are shown for general linear, possibly degenerate, second order advection-diffusion-reaction boundary value problems. A series of numerical experiments highlight the good practical performance of the proposed numerical framework.
Mots-clés : Recovered finite element method, polygonal and polyhedral meshes, $$ analysis, PDEs with non-negative characteristic form
@article{M2AN_2020__54_4_1309_0, author = {Dong, Zhaonan and Georgoulis, Emmanuil H. and Pryer, Tristan}, title = {Recovered finite element methods on polygonal and polyhedral meshes}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1309--1337}, publisher = {EDP-Sciences}, volume = {54}, number = {4}, year = {2020}, doi = {10.1051/m2an/2019047}, mrnumber = {4113053}, zbl = {1446.65165}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2019047/} }
TY - JOUR AU - Dong, Zhaonan AU - Georgoulis, Emmanuil H. AU - Pryer, Tristan TI - Recovered finite element methods on polygonal and polyhedral meshes JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2020 SP - 1309 EP - 1337 VL - 54 IS - 4 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2019047/ DO - 10.1051/m2an/2019047 LA - en ID - M2AN_2020__54_4_1309_0 ER -
%0 Journal Article %A Dong, Zhaonan %A Georgoulis, Emmanuil H. %A Pryer, Tristan %T Recovered finite element methods on polygonal and polyhedral meshes %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2020 %P 1309-1337 %V 54 %N 4 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2019047/ %R 10.1051/m2an/2019047 %G en %F M2AN_2020__54_4_1309_0
Dong, Zhaonan; Georgoulis, Emmanuil H.; Pryer, Tristan. Recovered finite element methods on polygonal and polyhedral meshes. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 4, pp. 1309-1337. doi : 10.1051/m2an/2019047. http://www.numdam.org/articles/10.1051/m2an/2019047/
High-order polygonal discontinuous Petrov-Galerkin (PolyDPG) methods using ultraweak formulations. Comput. Methods Appl. Mech. Eng. 332 (2018) 686–711. | DOI | MR
, , and ,Recovered mixed finite element methods. In preparation (2020).
, and ,Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23 (2013) 199–214. | DOI | MR | Zbl
, , , , and ,The Mimetic Finite Difference Method for Elliptic Problems. In: Vol. 11 of MS&A. Modeling, Simulation and Applications, Springer, Cham (2014). | MR | Zbl
, and ,Stability analysis for the virtual element method. Math. Models Methods Appl. Sci. 27 (2017) 2557–2594. | DOI | MR
, and ,interior penalty methods for fourth order elliptic boundary value problems on polygonal domains. J. Sci. Comput. 22, 23 (2005) 83–118. | DOI | MR | Zbl
and ,Virtual element methods on meshes with small edges or faces. Math. Models Methods Appl. Sci. 28 (2018) 1291–1336. | DOI | MR
and ,A unified analysis for conforming and nonconforming stabilized finite element methods using interior penalty. SIAM J. Numer. Anal. 43 (2005) 2012–2033. | DOI | MR | Zbl
,Edge stabilization for Galerkin approximations of convection–diffusion–reaction problems. Comput. Methods Appl. Mech. Eng. 193 (2004) 1437–1453. | DOI | MR | Zbl
and ,-version discontinuous Galerkin methods on polygonal and polyhedral meshes. Math. Models Methods Appl. Sci. 24 (2014) 2009–2041. | DOI | MR | Zbl
, and ,-version discontinuous Galerkin methods for advection-diffusion-reaction problems on polytopic meshes. ESAIM: M2AN 50 (2016) 699–725. | DOI | Numdam | MR
, , and ,-Version Discontinuous Galerkin Methods on Polygonal and Polyhedral Meshes. Springer (2017). | DOI | MR
, , and ,-version space-time discontinuous Galerkin methods for parabolic problems on prismatic meshes. SIAM J. Sci. Comput. 39 (2017) A1251–A1279. | DOI | MR
, and ,Conforming and nonconforming virtual element methods for elliptic problems. IMA J. Numer. Anal. 37 (2017) 1317–1354. | MR
, and ,The Finite Element Method for Elliptic Problems. In: Vol. 40 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2002). | MR | Zbl
,Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 9 (1975) 77–84. | Numdam | MR | Zbl
,Continuous dependence and error estimation for viscosity methods. Acta Numer. 12 (2003) 127–180. | DOI | MR | Zbl
,Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47 (2009) 1319–1365. | DOI | MR | Zbl
, and ,Bridging the hybrid high-order and hybridizable discontinuous Galerkin methods. ESAIM: M2AN 50 (2016) 635–650. | DOI | Numdam | MR
, and ,Mathematical Aspects of Discontinuous Galerkin Methods. In: Vol. 69 of Mathématiques & Applications (Berlin) [Mathematics & Applications]. Springer, Heidelberg (2012). | DOI | MR | Zbl
and ,A hybrid high-order locking-free method for linear elasticity on general meshes. Comput. Methods Appl. Mech. Eng. 283 (2015) 1–21. | DOI | MR
and ,Interior penalty procedures for elliptic and parabolic Galerkin methods. In: Vol. 58 of Lecture Notes in Physics (1976) 207–216. | DOI | MR
and ,A note on the design of -version interior penalty discontinuous Galerkin finite element methods for degenerate problems. IMA J. Numer. Anal. 26 (2006) 381–390. | DOI | MR | Zbl
and ,Recovered finite element methods. Comput. Methods Appl. Mech. Eng. 332 (2018) 303–324. | DOI | MR
and ,An a posteriori error indicator for discontinuous Galerkin approximations of fourth-order elliptic problems. IMA J. Numer. Anal. 31 (2011) 281–298. | DOI | MR | Zbl
, and ,Babuška-Osborn techniques in discontinuous Galerkin methods: -norm error estimates for unstructured meshes. Preprint (2017). | arXiv
, , ,A posteriori analysis of discontinuous Galerkin schemes for systems of hyperbolic conservation laws. SIAM J. Numer. Anal. 53 (2015) 1280–1303. | DOI | MR
, and ,Composite finite elements for the approximation of PDEs on domains with complicated micro-structures. Numer. Math. 75 (1997) 447–472. | DOI | MR | Zbl
and ,Stabilised -finite element approximation of partial differential equations with nonnegative characteristic form. Computing 66 (2001) 99–119. | DOI | MR | Zbl
and ,Stabilized -finite element methods for first-order hyperbolic problems. SIAM J. Numer. Anal. 37 (2000) 1618–1643. | DOI | MR | Zbl
, and ,Discontinuous -finite element methods for advection-diffusion-reaction problems. SIAM J. Numer. Anal. 39 (2002) 2133–2163. | DOI | MR | Zbl
, and ,Convergence of adaptive discontinuous Galerkin approximations of second-order elliptic problems. SIAM J. Numer. Anal. 45 (2007) 641–665. | DOI | MR | Zbl
and ,Weak Galerkin finite element methods for the biharmonic equation on polytopal meshes. Numer. Methods Part. Differ. Equ. 30 (2014) 1003–1029. | DOI | MR | Zbl
, and ,über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Collection of articles dedicated to Lothar Collatz on his sixtieth birthday. Abh. Math. Sem. Univ. Hamburg 36 (1971) 9–15. | DOI | MR | Zbl
,Second Order Equations with Nonnegative Characteristic Form. American Mathematical Society, 1973. | DOI | MR | Zbl
and ,On a BPX-preconditioner for # elements. Computing 51 (1993) 125–133. | DOI | MR | Zbl
,The composite mini element-coarse mesh computation of Stokes flows on complicated domains. SIAM J. Numer. Anal. 46 (2008) 3181–3206. | DOI | MR | Zbl
and ,Triangular mesh methods for the neutron transport equation. Technical Report LA-UR-73-479, Los Alamos Scientific Laboratory (1973).
and ,Higher order BEM-based FEM on polygonal meshes. SIAM J. Numer. Anal. 50 (2012) 2357–2378. | DOI | MR | Zbl
, ,Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54 (1990) 483–493. | DOI | MR | Zbl
, ,Conforming polygonal finite elements. Int. J. Numer. Methods Eng. 61 (2004) 2045–2066. | DOI | MR | Zbl
and ,PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab. Struct. Multidisc. Optim. 45 (2012) 309–328. | DOI | MR | Zbl
, , and ,Quasi-optimal nonconforming methods for symmetric elliptic problems. III – discontinuous Galerkin and other interior penalty methods. SIAM J. Numer. Anal. 56 (2018) 2871–2894. | DOI | MR
and ,Cité par Sources :