Discrete duality finite volume method with tangential redistribution of points for surfaces evolving by mean curvature
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 6, pp. 1797-1840.

We propose a new discrete duality finite volume method for solving mean curvature flow of surfaces in ℝ3. In the cotangent scheme, which is widely used discretization of Laplace–Beltrami operator, a two-dimensional surface is usually approximated by a triangular mesh. In the cotangent scheme the unknowns are the vertices of the triangulation. A finite volume around each vertex is constructed as a surface patch bounded by a piecewise linear curve with nodes in the midpoints of the neighbouring edges and a representative point of each adjacent triangle. The basic idea of our new approach is to include the representative points into the numerical scheme as supplementary unknowns and generalize discrete duality finite volume method from ℝ2 to 2D surfaces embedded in ℝ3. To improve the quality of the mesh we use an area-oriented tangential redistribution of the grid points. We derive the numerical scheme for both closed surfaces and surfaces with boundary, and present numerical experiments. Surface evolution models are applied to construction of minimal surfaces with given set of boundary curves.

DOI : 10.1051/m2an/2019040
Classification : 53A10, 53C44, 65D17, 65M08
Mots-clés : Surface evolution, mean curvature flow, tangential redistribution, finite volume, discrete duality, minimal surface
Tomek, Lukáš 1 ; Mikula, Karol 1

1
@article{M2AN_2019__53_6_1797_0,
     author = {Tomek, Luk\'a\v{s} and Mikula, Karol},
     title = {Discrete duality finite volume method with tangential redistribution of points for surfaces evolving by mean curvature},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1797--1840},
     publisher = {EDP-Sciences},
     volume = {53},
     number = {6},
     year = {2019},
     doi = {10.1051/m2an/2019040},
     mrnumber = {4019761},
     zbl = {1434.53097},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2019040/}
}
TY  - JOUR
AU  - Tomek, Lukáš
AU  - Mikula, Karol
TI  - Discrete duality finite volume method with tangential redistribution of points for surfaces evolving by mean curvature
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2019
SP  - 1797
EP  - 1840
VL  - 53
IS  - 6
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2019040/
DO  - 10.1051/m2an/2019040
LA  - en
ID  - M2AN_2019__53_6_1797_0
ER  - 
%0 Journal Article
%A Tomek, Lukáš
%A Mikula, Karol
%T Discrete duality finite volume method with tangential redistribution of points for surfaces evolving by mean curvature
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2019
%P 1797-1840
%V 53
%N 6
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2019040/
%R 10.1051/m2an/2019040
%G en
%F M2AN_2019__53_6_1797_0
Tomek, Lukáš; Mikula, Karol. Discrete duality finite volume method with tangential redistribution of points for surfaces evolving by mean curvature. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 6, pp. 1797-1840. doi : 10.1051/m2an/2019040. http://www.numdam.org/articles/10.1051/m2an/2019040/

L. Alvarez, F. Guichard, P.L. Lions and J.M. Morel, Axioms and fundamental equations of image processing. Arch. Ration. Mech. Anal. 123 (1993) 199–257. | DOI | MR | Zbl

J. Barrett, H. Garcke and R. Nürnberg, On the parametric finite element approximation of evolving hypersurfaces in 3 . J. Comput. Phys. 227 (2008) 4281–4307. | DOI | MR | Zbl

J. Barrett, H. Garcke and R. Nürnberg, The approximation of planar curve evolutions by stable fully implicit finite element schemes that equidistribute. Numer. Methods Partial Differ. Equ. 27 (2011) 1–30. | DOI | MR | Zbl

M. Bauer, P. Harms and P.W. Michor, Almost local metrics on shape space of hypersurfaces in n -space. SIAM J. Imaging Sci. 5 (2012) 244–310. | DOI | MR | Zbl

H. Benninghoff and H. Garcke, Efficient image segmentation and restoration using parametric curve evolution with junctions and topology changes. SIAM J. Imaging Sci. 7 (2014) 1451–1483. | DOI | MR | Zbl

H. Benninghoff and H. Garcke, Segmentation and restoration of images on surfaces by parametric active contours with topology changes. J. Math. Imaging Vision 55 (2016) 105–124. | DOI | MR | Zbl

V. Caselles, R. Kimmel and G. Sapiro, Geodesic active contours. Int. J. Comput. Vision 22 (1997) 61–79. | DOI | Zbl

A. Costa, Examples of a complete minimal immersion in IR 3 of genus one and three embedded ends. Bil. Soc. Bras. Mat. 15 (1984) 47–54. | DOI | MR | Zbl

Y. Coudière, J.-P. Vila and P. Villedieu, Convergence rate of a finite volume scheme for a two dimensional convection-diffusion problem. ESAIM: M2AN 33 (1999) 493–516. | DOI | Numdam | MR | Zbl

S. Delcourte, K. Domelevo and P. Omnes, A discrete duality finite volume approach to hodge decomposition and div–curl problems on almost arbitrary two–dimensional meshes. SIAM J. Numer. Anal. 45 (2007) 1142–1174. | DOI | MR | Zbl

K. Domelevo and P. Omnes, A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids. ESAIM: M2AN 39 (2005) 1203–1249. | DOI | Numdam | MR | Zbl

G. Dziuk, An algorithm for evolutionary surfaces. Numer. Math. 58 (1990) 603–611. | DOI | MR | Zbl

G. Dziuk and J.E. Hutchinson, The discrete plateau problem: convergence results. Math. Comput. 68 (1999) 519–546. | DOI | MR | Zbl

G. Dziuk and C.M. Elliott, Finite elements on evolving surfaces. IMA J. Numer. Anal. 27 (2007) 262–292. | DOI | MR | Zbl

C.M. Elliott and H. Fritz, On algorithms with good mesh properties for problems with moving boundaries based on the harmonic map heat flow and the deturck trick. SMAI J. Comput. Math. 2 (2016) 141–176. | DOI | MR | Zbl

L.C. Evans and J. Spruck, Motion of level sets by mean curvature. J. Differ. Geom. 33 (1991) 635–681. | DOI | MR | Zbl

R. Eymard, T. Gallouët and R. Herbin, Finite volume methods. In: Solution of Equation in Rn (Part 3), Techniques of Scientific Computing (Part 3). Vol. 7 of Handbook of Numerical Analysis. Elsevier (2000) 713–1018. | DOI | MR | Zbl

F. Hermeline, A finite volume method for the approximation of diffusion operators on distorted meshes. J. Comput. Phys. 160 (2000) 481–499. | DOI | MR | Zbl

T.Y. Hou, I. Klapper and H. Si, Removing the stiffness of curvature in computing 3-D filaments. J. Comput. Phys. 143 (1998) 628–664. | DOI | MR | Zbl

T.Y. Hou, J.S. Lowengrub and M.J. Shelley, Removing the stiffness from interfacial flows with surface tension. J. Comput. Phys. 114 (1994) 312–338. | DOI | MR | Zbl

M. Húska, M. Medľa, K. Mikula, P. Novysedlák and M. Remešková, A new form-finding method based on mean curvature flow of surfaces. Proc. Conf. Algoritmy (2015) 120–131. | Zbl

X. Jiao, A. Colombi, X. Ni and J. Hart, Anisotropic mesh adaptation for evolving triangulated surfaces. Eng. Comput. 26 (2010) 363–376. | DOI

M. Kimura, Numerical analysis of moving boundary problems using the boundary tracking method. Jpn J. Ind. Appl. Math. 14 (1997) 373–398. | DOI | MR | Zbl

C. Mantegazza, Lecture Notes on Mean Curvature Flow. Springer Basel, Basel (2011). | DOI | MR | Zbl

M. Meyer, M. Desbrun, P. Schröder, A.H. Barr, Discrete differential-geometry operators for triangulated 2-manifolds. In: Visualization and Mathematics III. Edited by H.-C. Hege and K. Polthier. Springer, Berlin Heidelberg, Berlin, Heidelberg (2003) 35–57. | DOI | Zbl

K. Mikula, N. Peyriéeras, M. Remešíková, M. Smíšek, 4D numerical schemes for cell image segmentation and tracking, edited by J. Fot, J. Fürst, J. Halama, R. Herbin, F. Hubert. In: Finite Volumes for Complex Applications VI Problems & Perspectives. Springer, Berlin Heidelberg, Berlin, Heidelberg (2011) 693–701. | MR | Zbl

K. Mikula, M. Remešková, P. Sarkoci and D. Ševčovič, Manifold evolution with tangential redistribution of points. SIAM J. Sci. Comput. 36 (2014) A1384–A1414. | DOI | MR | Zbl

K. Mikula, J. Urbán, 3D curve evolution algorithm with tangential redistribution for a fully automatic finding of an ideal camera path in virtual colonoscopy. In: Scale Space and Variational Methods in Computer Vision. Edited by A.M. Bruckstein, B.M. Ter Haar Romeny, A.M. Bronstein and M.M. Bronstein. Springer, Berlin Heidelberg, Berlin, Heidelberg (2012) 640–652. | DOI

K. Mikula and D. Ševčovič, A direct method for solving an anisotropic mean curvature flow of plane curves with an external force. Math. Methods Appl. Sci. 27 (2004) 1545–1565. | DOI | MR | Zbl

K. Mikula and D. Ševčovič, Evolution of curves on a surface driven by the geodesic curvature and external force. Appl. Anal. 85 (2006) 345–362. | DOI | MR | Zbl

S. Morigi, Geometric surface evolution with tangential contribution. Special Issue Dedicated to William B. Gragg on the Occasion of His 70th Birthday. J. Comput. Appl. Math. 233 (2010) 1277–1287. | Zbl

P. Mullen, P. Memari, F. Goes and M. Desbrun, Hot: hodgeoptimized triangulations. ACM Trans. Graph. 30 (2011) 103. | DOI

W.W. Mullins, Two-dimensional motion of idealized grain boundaries. J. Appl. Phys. 27 (1956) 900–904. | DOI | MR

A. Nealen, T. Igarashi, O. Sorkine and M. Alexa, Laplacian mesh optimization (2006) 381–389.

S. Osher and R.P. Fedkiw, The Level Set Methods and Dynamic Implicit Surfaces. Springer-Verlag, Berlin, 57 (2004). | MR | Zbl

J. Pełczyński and P. Wawruch, Facade shaping inspired by scherk’s minimal surfaces. XXIV R-S-P seminar, Theoretical Foundation of Civil Engineering (24RSP) (TFoCE 2015). Proc. Eng. 111 (2015) 632–636.

U. Pinkall and K. Polthier, Computing discrete minimal surfaces and their conjugates. Exp. Math. 2 (1993) 15–36. | DOI | MR | Zbl

J.A.F. Plateau, Statique expérimentale et téoretique des liquides soumis aux seule forces moléculaires. Gauthier-Villars, Paris (1873). | JFM

H. Schumacher and M. Wardetzky, Variational convergence of discrete minimal surfaces. Numer. Math. (2016). | MR | Zbl

J.A. Sethian, Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge University Press, Cambridge (1999). | MR | Zbl

D. Ševčovič and S. Yazaki, Evolution of plane curves with a curvature adjusted tangential velocity. Jpn J. Ind. Appl. Math. 28 (2011) 413. | DOI | MR | Zbl

L. Tomek, K. Mikula and M. Remešková, Discrete duality finite volume method for mean curvature flow of surfaces. Proc. Proc. of the Conference Algoritmy (2016) 33–43.

L. Tomek, M. Remešková and K. Mikula, Computing minimal surfaces by mean curvature flow with area-oriented tangential redistribution. Acta Math. Univ. Comenianae 87 (2018) 55–72. | MR | Zbl

T. Tsuchiya, Discrete solution of the plateau problem and its convergence. Math. Comput. 49 (1987) 157–165. | DOI | MR | Zbl

H.A. Van Der Vorst, Bi-cgstab: a fast and smoothly converging variant of bi-cg for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 13 (1992) 631–644. | DOI | MR | Zbl

D. Ševčovič and K. Mikula, Evolution of plane curves driven by a nonlinear function of curvature and anisotropy. SIAM J. Appl. Math. 61 (2001) 1473–1501. | DOI | MR | Zbl

T. Wallisser, Other geometries in architecture: bubbles, knots and minimal surfaces. Springer Milan, Milano (2009) 91–111. | MR

Cité par Sources :