Energy-corrected FEM and explicit time-stepping for parabolic problems
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 6, pp. 1893-1914.

The presence of corners in the computational domain, in general, reduces the regularity of solutions of parabolic problems and diminishes the convergence properties of the finite element approximation introducing a so-called “pollution effect”. Standard remedies based on mesh refinement around the singular corner result in very restrictive stability requirements on the time-step size when explicit time integration is applied. In this article, we introduce and analyse the energy-corrected finite element method for parabolic problems, which works on quasi-uniform meshes, and, based on it, create fast explicit time discretisation. We illustrate these results with extensive numerical investigations not only confirming the theoretical results but also showing the flexibility of the method, which can be applied in the presence of multiple singular corners and a three-dimensional setting. We also propose a fast explicit time-stepping scheme based on a piecewise cubic energy-corrected discretisation in space completed with mass-lumping techniques and numerically verify its efficiency.

DOI : 10.1051/m2an/2019038
Classification : 35K10, 65M15, 65M60, 65Z05
Mots-clés : Mathematics Subject Classification, Corner singularities, second-order parabolic equations, energy-corrected FEM
Swierczynski, Piotr 1 ; Wohlmuth, Barbara 1

1
@article{M2AN_2019__53_6_1893_0,
     author = {Swierczynski, Piotr and Wohlmuth, Barbara},
     title = {Energy-corrected {FEM} and explicit time-stepping for parabolic problems},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1893--1914},
     publisher = {EDP-Sciences},
     volume = {53},
     number = {6},
     year = {2019},
     doi = {10.1051/m2an/2019038},
     mrnumber = {4019763},
     zbl = {1431.65179},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2019038/}
}
TY  - JOUR
AU  - Swierczynski, Piotr
AU  - Wohlmuth, Barbara
TI  - Energy-corrected FEM and explicit time-stepping for parabolic problems
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2019
SP  - 1893
EP  - 1914
VL  - 53
IS  - 6
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2019038/
DO  - 10.1051/m2an/2019038
LA  - en
ID  - M2AN_2019__53_6_1893_0
ER  - 
%0 Journal Article
%A Swierczynski, Piotr
%A Wohlmuth, Barbara
%T Energy-corrected FEM and explicit time-stepping for parabolic problems
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2019
%P 1893-1914
%V 53
%N 6
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2019038/
%R 10.1051/m2an/2019038
%G en
%F M2AN_2019__53_6_1893_0
Swierczynski, Piotr; Wohlmuth, Barbara. Energy-corrected FEM and explicit time-stepping for parabolic problems. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 6, pp. 1893-1914. doi : 10.1051/m2an/2019038. http://www.numdam.org/articles/10.1051/m2an/2019038/

T. Apel, A.-M. Sändig and J.R. Whiteman, Graded mesh refinement and error estimates for finite element solutions of elliptic boundary value problems in non-smooth domains. Math. Methods Appl. Sci. 19 (1996) 63–85. | DOI | MR | Zbl

T. Apel, S. Nicaise and J. Schöberl, A non-conforming finite element method with anisotropic mesh grading for the Stokes problem in domains with edges. IMA J. Numer. Anal. 21 (2001) 843–856. | DOI | MR | Zbl

J.D. Arregui Mena, L. Margetts, L. Evans, D.V. Griffiths, A. Shterenlikht, L. Cebamanos and P.M. Mummery, The stochastic finite element method for nuclear applications. ECCOMAS Congr. 2016 (2016).

I. Babuška, Finite element method for domains with corners. Computing 6 (1970) 264–273. | DOI | MR | Zbl

I. Babuška and T. Strouboulis, The finite element method and its reliability. In: Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York (2001). | MR

G.A. Baker, J.H. Bramble and V. Thomée, Single step Galerkin approximations for parabolic problems. Math. Comput. 31 (1977) 818–847. | DOI | MR | Zbl

J. Banasiak and G.F. Roach, On corner singularities of solutions to mixed boundary-value problems for second-order elliptic and parabolic equations. Proc.: Math. Phys. Sci. 433 (1991) 209–217. | MR | Zbl

S. Bartels, Numerical approximation of partial differential equations. In: Texts in Applied Mathematics. Springer International Publishing (2016). | DOI | MR | Zbl

H. Blum, The influence of reentrant corners in the numerical approximation of viscous flow problems, in Numerical Treatment of the Navier-Stokes Equations (Kiel, 1989). Vol. 30 of Notes on Numerical Fluid Mechanics. Vieweg, Braunschweig (1990), 37–46. | DOI | MR | Zbl

H. Blum and M. Dobrowolski, On finite element methods for elliptic equations on domains with corners. Computing 28 (1982) 53–63. | DOI | MR | Zbl

D. Boffi, F. Brezzi and M. Fortin, Mixed finite element methods and applications. Vol. 44 of Springer Series in Computational Mathematics. Springer, Heidelberg (2013). | MR | Zbl

D. Braess. Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics. 3rd ed., Cambridge University Press (2007). | Zbl

P. Brenner, M. Crouzeix and V. Thomée, Single step methods for inhomogeneous linear differential equations in Banach space. RAIRO. Analyse Numérique 16 (1982) 5–26. | DOI | Numdam | MR | Zbl

S.C. Brenner and L.R. Scott, The mathematical theory of finite element methods, 3rd ed.. Vol. 15 of Texts in Applied Mathematics. Springer, New York (2008). | MR | Zbl

Y.A. Cengel and A.J. Ghajar. Heat and Mass Transfer: Fundamentals and Applications, 5th edition. McGraw-Hill Education (2014).

P. Chatzipantelidis, R.D. Lazarov, V. Thomée and L.B. Wahlbin, Parabolic finite element equations in nonconvex polygonal domains. BIT Numerical Mathematics 46 (2006) 113–143. | DOI | MR | Zbl

P.G. Ciarlet and J.L. Lions. Handbook of numerical analysis, Vol. II. In: Finite Element Methods (Part 1). North Holland, Amsterdam, New York, Oxford (1991). | MR

G. Cohen, P. Joly, J.E. Roberts and N. Tordjman, Higher order triangular finite elements with mass lumping for the wave equation. SIAM J. Numer. Anal. 38 (2001) 2047–2078. | DOI | MR | Zbl

J. Douglas and T.F. Dupont, Galerkin methods for parabolic equations. SIAM J. Numer. Anal. 7 (1970) 575–626. | DOI | MR | Zbl

H. Egger, U. Rüde and B. Wohlmuth, Energy-corrected finite element methods for corner singularities. SIAM J. Numer. Anal. 52 (2014) 171–193. | DOI | MR | Zbl

L.C. Evans, Partial differential equations, 2nd edition. In: Graduate Studies in Mathematics. American Mathematical Society, Providence, R.I. (2010) | MR | Zbl

G. Fix and N. Nassif, On finite element approximations in time dependent problems. Numer. Math. 19 (1972) 127–135. | DOI | MR | Zbl

P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman, Boston, 1985. | MR | Zbl

T. Horger, P. Pustejovska and B. Wohlmuth, Higher order energy-corrected finite element methods. Preprint arXiv:1704.05638 (2017).

M. Huber, L. John, P. Pustejovska, U. Rüde, C. Waluga and B. WohlmuthSolution techniques for the Stokes system: a priori and a posteriori modifications, resilient algorithms. In: Proceedings 8th International Congress on Industrial and Applied Mathematics. Higher Ed. Press, Beijing (2015) 109–134. | MR

L. John, P. Pustejovska, B. Wohlmuth and U. Rüde, Energy-corrected finite element methods for the Stokes system. IMA J. Numer. Anal. 37 (2017) 687–729. | MR | Zbl

L. John, P. Swierczynski and B. Wohlmuth, Energy corrected FEM for optimal Dirichlet boundary control problems. Numer. Math 139 (2018) 913–938. | DOI | MR | Zbl

V.A. Kondratiev, Boundary value problems for elliptic equations in domains with conical or angular points. Trans. Moscow Math. Soc. 16 (1967) 227–313. | MR | Zbl

A. Kufner, Weighted Sobolev spaces. A Wiley-Interscience Publication. Translated from the Czech. John Wiley & Sons Inc, New York (1985). | MR | Zbl

H. Lewy, K. Friedrichs and R. Courant, Über die partiellen Differenzengleichungen der mathematischen Physik. Mathematische Annalen 100 (1928) 32–74. | DOI | JFM | MR

J.H. Lienhard Iv and J.H. Lienhard V, A Heat Transfer Textbook, 4th edition. Phlogiston Press, Cambridge, MA (2017).

M.H. Nguyen and T.A. Nguyen, Regularity of solutions of initial–boundary value problems for parabolic equations in domains with conical points. J. Differ. Equ. 245 (2008) 1801–1818. | DOI | MR | Zbl

E. Nonbol, Description of the advanced gas cooled type of reactor (AGR), Nordic Nuclear Safety Research (1996).

H. Price and R. Varga, Error bounds for semi-discrete galerkin approximations of parabolic problems with applications to petroleum reservoir mechanics. In: Numerical Solution of Field Problems in Continuum Physics. American Mathematical Society, Providence, R. I (1970) 74–94. | MR | Zbl

U. Rüde, Local corrections for eliminating the pollution effect of reentrant corners, Institut für Informatik, Technische Universtät München (1989). Technical Report TUM-INFO-02-89-I01..

U. Rüde and C. Zenger, On the treatment of singularities in the multigrid method, in: Multigrid Methods II, edited by W. Hackbusch and U. Trottenberg, Vol 1228 of Lecture Notes in Mathematics. Springer Berlin-Heidelberg (1986) 261–271. | DOI | Zbl

U. Rüde, C. Waluga and B. Wohlmuth, Nested newton strategies for energy-corrected finite element methods. SIAM J. Sci. Comput. 36 (2014) A1359–A1383. | DOI | MR | Zbl

A.H. Schatz and L.B. Wahlbin, Maximum norm estimates in the finite element method on plane polygonal domains. Part 2, refinements. Math. Comput. 33 (1979) 465–492. | MR | Zbl

G. Strang and G.J. Fix, An Analysis of the Finite Element Method. Wellesley-Cambridge Press (1988). | MR | Zbl

P. Swierczynski and B. Wohlmuth, Maximum norm estimates for energy-corrected finite element method. Numer. Math. Adv. Appl. ENUMATH 2017 In Vol. 126 of Lecture Notes in Computational Science and Engineering. Springer (2019) | DOI | MR | Zbl

V. Thomée, Finite difference methods for linear parabolic equations, in Handbook of Numerical Analysis, edited by P.G. Ciarlet and J.L. Lions, In: Finite Difference Methods 1. North-Holland, Amsterdam (1990). | Zbl

V. Thomée, Galerkin Finite Element Methods for Parabolic Problems. In: Springer Series in Computational Mathematics. Springer-Verlag, New York Inc, Secaucus, NJ, USA (2006). | MR | Zbl

M.F. Wheeler, A priori L 2 error estimates for Galerkin approximations to parabolic partial differential equations. SIAM J. Numer. Anal. 10 (1973) 723–759. | DOI | MR | Zbl

C. Zenger and H. Gietl, Improved difference schemes for the Dirichlet problem of Poisson’s equation in the neighbourhood of corners. Numer. Math. 30 (1978) 315–332. | DOI | MR | Zbl

Cité par Sources :