New volume consistent approximation for binary breakage Population Balance Equation and its convergence analysis
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 5, pp. 1695-1713.

This work is focused on developing a numerical approximation based on finite volume scheme to solve a binary breakage population balance equation (PBE). The mathematical convergence analysis of the proposed scheme is discussed in detail for different grids. The proposed scheme is mathematical simple and can be implemented easily on general grids. The numerical results and findings are validated against the existing scheme over different benchmark problems. All numerical predictions demonstrate that the proposed scheme is highly accurate and efficient as compared to the existing method. Moreover, the theoretical observations concerning order of convergence are verified with the numerical order of convergence which shows second order convergence irrespective of grid chosen for discretization. The proposed scheme will be the first ever numerical approximation for a binary breakage PBE free from that the particles are concentrated on the representative of the cell.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2019036
Classification : 35R09, 65R20
Mots-clés : Particles, binary breakage, population balance equation, finite volume scheme, nonuniform grids
Singh, Mehakpreet 1 ; Matsoukas, Themis 1 ; Albadarin, Ahmad B. 1 ; Walker, Gavin 1

1
@article{M2AN_2019__53_5_1695_0,
     author = {Singh, Mehakpreet and Matsoukas, Themis and Albadarin, Ahmad B. and Walker, Gavin},
     title = {New volume consistent approximation for binary breakage {Population} {Balance} {Equation} and its convergence analysis},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1695--1713},
     publisher = {EDP-Sciences},
     volume = {53},
     number = {5},
     year = {2019},
     doi = {10.1051/m2an/2019036},
     mrnumber = {4003469},
     zbl = {1425.82022},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2019036/}
}
TY  - JOUR
AU  - Singh, Mehakpreet
AU  - Matsoukas, Themis
AU  - Albadarin, Ahmad B.
AU  - Walker, Gavin
TI  - New volume consistent approximation for binary breakage Population Balance Equation and its convergence analysis
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2019
SP  - 1695
EP  - 1713
VL  - 53
IS  - 5
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2019036/
DO  - 10.1051/m2an/2019036
LA  - en
ID  - M2AN_2019__53_5_1695_0
ER  - 
%0 Journal Article
%A Singh, Mehakpreet
%A Matsoukas, Themis
%A Albadarin, Ahmad B.
%A Walker, Gavin
%T New volume consistent approximation for binary breakage Population Balance Equation and its convergence analysis
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2019
%P 1695-1713
%V 53
%N 5
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2019036/
%R 10.1051/m2an/2019036
%G en
%F M2AN_2019__53_5_1695_0
Singh, Mehakpreet; Matsoukas, Themis; Albadarin, Ahmad B.; Walker, Gavin. New volume consistent approximation for binary breakage Population Balance Equation and its convergence analysis. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 5, pp. 1695-1713. doi : 10.1051/m2an/2019036. http://www.numdam.org/articles/10.1051/m2an/2019036/

M.M. Attarakih, H.-J. Bart and N.M. Faqir, Solution of the droplet breakage equation for interacting liquid–liquid dispersions: a conservative discretization approach. Chem. Eng. Sci. 59 (2004) 2547–2565. | DOI

H. Berthiaux and J. Dodds, A new estimation technique for the determination of breakage and selection parameters in batch grinding. Powder Technol. 94 (1997) 173–179. | DOI

J.-P. Bourgade and F. Filbet, Convergence of a finite volume scheme for coagulation-fragmentation equations. Math. Comput. 77 (2008) 851–882. | DOI | MR | Zbl

A. Braumann, M. Kraft and W. Wagner, Numerical study of a stochastic particle algorithm solving a multidimensional population balance model for high shear granulation. J. Comput. Phys. 229 (2010) 7672–7691. | DOI | Zbl

P. Dubovskii, V. Galkin and I. Stewart, Exact solutions for the coagulation-fragmentation equation. J. Phys. A: Math. General 25 (1992) 4737. | DOI | MR | Zbl

L. Forestier-Coste and S. Mancini, A finite volume preserving scheme on nonuniform meshes and for multidimensional coalescence. SIAM J. Sci. Comput. 34 (2012) B840–B860. | DOI | MR | Zbl

S. Ganesan, An operator-splitting galerkin/supg finite element method for population balance equations: stability and convergence. ESAIM: M2AN 46 (2012) 1447–1465. | DOI | Numdam | MR | Zbl

Y.K. Ho, C. Kirse, H. Briesen, M. Singh, C.-H. Chan and K.-W. Kow, Towards improved predictions for the enzymatic chain-end scission of natural polymers by population balances: the need for a non-classical rate kernel. Chem. Eng. Sci. 176 (2018) 329–342. | DOI

M. Hounslow, R. Ryall and V. Marshall, A discretized population balance for nucleation, growth, and aggregation. AIChE J. 34 (1988) 1821–1832. | DOI

W. Hundsdorfer and J.G. Verwer, Numerical solution of time-dependent advection-diffusion-reaction equations. In Vol. 33, Springer Science & Business Media, Berlin (2013). | MR | Zbl

H.Y. Ismail, M. Singh, S. Darwish, M. Kuhs, S. Shirazian, D.M. Croker, M. Khraisheh, A.B. Albadarin and G.M. Walker, Developing ann-kriging hybrid model based on process parameters for prediction of mean residence time distribution in twin-screw wet granulation. Powder Technol. 343 (2019) 568–577. | DOI

G. Kaur, M. Singh, T. Matsoukas, J. Kumar, T. De Beer and I. Nopens, Two-compartment modeling and dynamics of top-sprayed fluidized bed granulator. Appl. Math. Modell. 68 (2019) 267–280. | DOI

S. Kumar and D. Ramkrishna, On the solution of population balance equations by discretization – i. A fixed pivot technique. Chem. Eng. Sci. 51 (1996) 1311–1332. | DOI

J. Kumar and G. Warnecke, Convergence analysis of sectional methods for solving breakage population balance equations-I: the fixed pivot technique. Numer. Math. 111 (2008) 81–108. | DOI | MR | Zbl

J. Kumar and G. Warnecke, Convergence analysis of sectional methods for solving breakage population balance equations-II: the cell average technique. Numer. Math. 110 (2008) 539–559. | DOI | MR | Zbl

J. Kumar, M. Peglow, G. Warnecke, S. Heinrich and L. Mörl, Improved accuracy and convergence of discretized population balance for aggregation: the Cell Average Technique. Chem. Eng. Sci. 61 (2006) 3327–3342. | DOI

R. Kumar, J. Kumar and G. Warnecke, Moment preserving finite volume schemes for solving population balance equations incorporating aggregation, breakage, growth and source terms. Math. Models Methods Appl. Sci. 23 (2013) 1235–1273. | DOI | MR | Zbl

J. Kumar, J. Saha and E. Tsotsas, Development and convergence analysis of a finite volume scheme for solving breakage equation. SIAM J. Numer. Anal. 53 (2015) 1672–1689. | DOI | MR | Zbl

K. Lee and T. Matsoukas, Simultaneous coagulation and break-up using constant-N monte carlo. Powder Technol. 110 (2000) 82–89. | DOI

K.F. Lee, R.I. Patterson, W. Wagner and M. Kraft, Stochastic weighted particle methods for population balance equations with coagulation, fragmentation and spatial inhomogeneity. J. Comput. Phys. 303 (2015) 1–18. | DOI | MR | Zbl

P. Linz, Convergence of a discretization method for integro-differential equations. Numer. Math. 25 (1975) 103–107. | DOI | MR | Zbl

J. Litster and B. Ennis, The Science and Engineering of Granulation Processes. In Vol. 15, Springer Science & Business Media, Berlin (2013).

B.J. Mccoy and G. Madras, Discrete and continuous models for polymerization and depolymerization. Chem. Eng. Sci. 56 (2001) 2831–2836. | DOI

W.J. Menz, J. Akroyd and M. Kraft, Stochastic solution of population balance equations for reactor networks. J. Comput. Phys. 256 (2014) 615–629. | DOI | MR | Zbl

M. Nicmanis and M. Hounslow, Finite-element methods for steady-state population balance equations. AIChE J. 44 (1998) 2258–2272. | DOI

L. Oddershede, P. Dimon and J. Bohr, Self-organized criticality in fragmenting. Phys. Rev. Lett. 71 (1993) 3107. | DOI

H.M. Omar and S. Rohani, Crystal population balance formulation and solution methods: a review. Crystal Growth Des. 17 (2017) 4028–4041. | DOI

D. Ramkrishna, Population Balances: Theory and Applications to Particulate Systems in Engineering. Elsevier, Amsterdam (2000).

J. Saha, J. Kumar and S. Heinrich, A volume-consistent discrete formulation of particle breakage equation. Comput. Chem. Eng. 97 (2017) 147–160. | DOI

J. Saha, J. Kumar and S. Heinrich, On the approximate solutions of fragmentation equations. Proc. R. Soc. A 474 (2018) 20170541. | DOI | MR | Zbl

P. Singh and M. Hassan, Kinetics of multidimensional fragmentation. Phys. Rev. E 53 (1996) 3134. | DOI | MR

M. Singh, J. Kumar, A. Bück and E. Tsotsas, A volume-consistent discrete formulation of aggregation population balance equations. Math. Methods Appl. Sci. 39 (2015) 2275–2286. | DOI | MR | Zbl

S. Wu, E.K. Yapp, J. Akroyd, S. Mosbach, R. Xu, W. Yang and M. Kraft, Extension of moment projection method to the fragmentation process. J. Comput. Phys. 335 (2017) 516–534. | DOI | MR | Zbl

R.M. Ziff and E. Mcgrady, The kinetics of cluster fragmentation and depolymerisation. J. Phys. A: Math. General 18 (1985) 3027. | DOI | MR

Cité par Sources :