Stability of numerical methods under the regime-switching jump-diffusion model with variable coefficients
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 5, pp. 1741-1762.

In this paper we introduce three numerical methods to evaluate the prices of European, American, and barrier options under a regime-switching jump-diffusion model (RSJD model) where the volatility and other parameters are considered as variable coefficients. The prices of the European option, which is one of the financial derivatives, are given by a partial integro-differential equation (PIDE) problem and those of the American option are evaluated by solving a linear complementarity problem (LCP). The proposed methods are constructed to avoid the use of any fixed point iteration techniques at each state of the economy and time step. We analyze the stability of the proposed methods with respect to the discrete l2-norm in the time and spatial variables. A variety of numerical experiments are carried out to show the second-order convergence of the three numerical methods under the regime-switching jump-diffusion model with variable coefficients.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2019035
Classification : 65M06, 47G20, 91B25
Mots-clés : Regime-switching jump-diffusion models, option pricing, finite difference methods, variable coefficients
Lee, Sunju 1 ; Lee, Younhee 1

1
@article{M2AN_2019__53_5_1741_0,
     author = {Lee, Sunju and Lee, Younhee},
     title = {Stability of numerical methods under the regime-switching jump-diffusion model with variable coefficients},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1741--1762},
     publisher = {EDP-Sciences},
     volume = {53},
     number = {5},
     year = {2019},
     doi = {10.1051/m2an/2019035},
     mrnumber = {4011567},
     zbl = {1475.91400},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2019035/}
}
TY  - JOUR
AU  - Lee, Sunju
AU  - Lee, Younhee
TI  - Stability of numerical methods under the regime-switching jump-diffusion model with variable coefficients
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2019
SP  - 1741
EP  - 1762
VL  - 53
IS  - 5
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2019035/
DO  - 10.1051/m2an/2019035
LA  - en
ID  - M2AN_2019__53_5_1741_0
ER  - 
%0 Journal Article
%A Lee, Sunju
%A Lee, Younhee
%T Stability of numerical methods under the regime-switching jump-diffusion model with variable coefficients
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2019
%P 1741-1762
%V 53
%N 5
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2019035/
%R 10.1051/m2an/2019035
%G en
%F M2AN_2019__53_5_1741_0
Lee, Sunju; Lee, Younhee. Stability of numerical methods under the regime-switching jump-diffusion model with variable coefficients. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 5, pp. 1741-1762. doi : 10.1051/m2an/2019035. http://www.numdam.org/articles/10.1051/m2an/2019035/

[1] Y. Achdou and O. Pironneau, Computational methods for option pricing. In Vol. 30 of Frontiers in Applied Mathematics. SIAM, Philadelphia, PA (2005). | MR | Zbl

[2] A.F. Bastani, Z. Ahmadi and D. Damircheli, A radial basis collocation method for pricing American options under regime-switching jump-diffusion models. Appl. Numer. Math. 65 (2013) 79–90. | DOI | MR | Zbl

[3] X. Chen, H. Cheng and J. Chadam, Nonconvexity of the optimal exercise boundary for an American put option on a dividend-paying asset. Math. Finance 23 (2013) 169–185. | DOI | MR | Zbl

[4] R. Cont and E. Voltchkova, A finite difference scheme for option pricing in jump diffusion and exponential Lévy models. SIAM J. Numer. Anal. 43 (2005) 1596–1626. | MR | Zbl

[5] M. Costabile, A. Leccadito, I. Massabó and E. Russo, Option pricing under regime-switching jump-diffusion models. J. Comput. Appl. Math. 256 (2014) 152–167. | MR | Zbl

[6] E. Derman and I. Kani, Riding on a smile. Risk 7 (1994) 32–39.

[7] B. Dupire, Pricing with a smile. Risk 7 (1994) 18–20.

[8] R.J. Elliott, L. Aggoun and J.B. Moore, Hidden Markov Models: Estimation and Control. Springer-Verlag, New York, NY (1995). | MR | Zbl

[9] S.L. Heston, A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Fin. Stud. 6 (1993) 327–343. | MR | Zbl

[10] S. Ikonen and J. Toivanen, Operator splitting methods for American option pricing. Appl. Math. Lett. 17 (2004) 809–814. | DOI | MR | Zbl

[11] K.R. Jackson, S. Jaimungal and V. Surkov, Fourier space time-stepping for option pricing with Lévy models. J. Comput. Fin. 12 (2008) 1–29. | DOI | MR | Zbl

[12] M.K. Kadalbajoo, L.P. Tripathi and A. Kumar, Second order accurate IMEX methods for option pricing under Merton and Kou jump-diffusion models. J. Sci. Comput. 65 (2015) 979–1024. | MR | Zbl

[13] S.G. Kou, A jump-diffusion model for option pricing. Manage. Sci. 48 (2002) 1086–1101. | DOI | Zbl

[14] Y. Kwon and Y. Lee, A second-order finite difference method for option pricing under jump-diffusion models. SIAM J. Numer. Anal. 49 (2011) 2598–2617. | DOI | MR | Zbl

[15] J. Lee and Y. Lee, Stability of an implicit method to evaluate option prices under local volatility with jumps. Appl. Numer. Math. 87 (2015) 20–30. | DOI | MR | Zbl

[16] Y. Lee, Financial options pricing with regime-switching jump-diffusions. Comput. Math. Appl. 68 (2014) 392–404. | MR | Zbl

[17] R.C. Merton, Option pricing when underlying stock returns are discontinuous. J. Fin. Econ. 3 (1976) 125–144. | Zbl

[18] V. Naik, Option valuation and hedging strategies with jumps in the volatility of asset returns. J. Fin. 48 (1993) 1969–1984. | DOI

[19] N. Rambeerich and A.A. Pantelous, A high order finite element scheme for pricing options under regime switching jump diffusion processes. J. Comput. Appl. Math. 300 (2016) 83–96. | MR | Zbl

[20] A. Ramponi, Fourier transform methods for regime-switching jump-diffusions and the pricing of forward starting options. Int. J. Theor. Appl. Fin. 15 (2012) 1250037. | DOI | MR | Zbl

[21] S. Salmi and J. Toivanen, IMEX schemes for pricing options under jump-diffusion models. Appl. Numer. Math. 84 (2014) 33–45. | MR | Zbl

Cité par Sources :