A dynamic multilayer shallow water model for polydisperse sedimentation
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 4, pp. 1391-1432.

A multilayer shallow water approach for the approximate description of polydisperse sedimentation in a viscous fluid is presented. The fluid is assumed to carry finely dispersed solid particles that belong to a finite number of species that differ in density and size. These species segregate and form areas of different composition. In addition, the settling of particles influences the motion of the ambient fluid. A distinct feature of the new approach is the particular definition of the average velocity of the mixture. It takes into account the densities of the solid particles and the fluid and allows us to recover the global mass conservation and linear momentum balance laws of the mixture. This definition motivates a modification of the Masliyah–Lockett–Bassoon (MLB) settling velocities of each species. The multilayer shallow water model allows one to determine the spatial distribution of the solid particles, the velocity field, and the evolution of the free surface of the mixture. The final model can be written as a multilayer model with variable density where the unknowns are the average velocities and concentrations in each layer, the transfer terms across each interface, and the total mass. An explicit formula of the transfer terms leads to a reduced form of the system. Finally, an explicit bound of the minimum and maximum eigenvalues of the transport matrix of the system is utilized to design a Harten–Lax–van Leer (HLL)-type path-conservative numerical method. Numerical simulations illustrate the coupled polydisperse sedimentation and flow fields in various scenarios, including sedimentation in a type of basin that is used in practice in mining industry and in a basin whose bottom topography gives rise to recirculations of the fluid and high solids concentrations.

DOI : 10.1051/m2an/2019032
Classification : 65N06, 76T20
Mots-clés : Multilayer shallow water model, polydisperse sedimentation, path-conservative method, viscous flow, recirculation
Bürger, Raimund 1 ; Fernández-Nieto, Enrique D. 1 ; Osores, Víctor 1

1
@article{M2AN_2019__53_4_1391_0,
     author = {B\"urger, Raimund and Fern\'andez-Nieto, Enrique D. and Osores, V{\'\i}ctor},
     title = {A dynamic multilayer shallow water model for polydisperse sedimentation},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1391--1432},
     publisher = {EDP-Sciences},
     volume = {53},
     number = {4},
     year = {2019},
     doi = {10.1051/m2an/2019032},
     zbl = {1477.35159},
     mrnumber = {3980062},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2019032/}
}
TY  - JOUR
AU  - Bürger, Raimund
AU  - Fernández-Nieto, Enrique D.
AU  - Osores, Víctor
TI  - A dynamic multilayer shallow water model for polydisperse sedimentation
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2019
SP  - 1391
EP  - 1432
VL  - 53
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2019032/
DO  - 10.1051/m2an/2019032
LA  - en
ID  - M2AN_2019__53_4_1391_0
ER  - 
%0 Journal Article
%A Bürger, Raimund
%A Fernández-Nieto, Enrique D.
%A Osores, Víctor
%T A dynamic multilayer shallow water model for polydisperse sedimentation
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2019
%P 1391-1432
%V 53
%N 4
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2019032/
%R 10.1051/m2an/2019032
%G en
%F M2AN_2019__53_4_1391_0
Bürger, Raimund; Fernández-Nieto, Enrique D.; Osores, Víctor. A dynamic multilayer shallow water model for polydisperse sedimentation. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 4, pp. 1391-1432. doi : 10.1051/m2an/2019032. http://www.numdam.org/articles/10.1051/m2an/2019032/

E. Audusse, A multilayer Saint-Venant model: derivation and numerical validation. Discrete Contin. Dyn. Syst. Ser. B 5 (2005) 189–214. | DOI | MR | Zbl

E. Audusse and M.-O. Bristeau, Finite-volume solvers for a multilayer Saint-Venant system. Int. J. Appl. Math. Comput. Sci. 17 (2007) 311–319. | DOI | MR | Zbl

E. Audusse, M.O. Bristeau and A. Decoene, Numerical simulations of 3D free surface flows by a multilayer Saint-Venant model. Int. J. Numer. Methods Fluids 56 (2008) 331–350. | DOI | MR | Zbl

E. Audusse, M. Bristeau, B. Perthame and J. Sainte-Marie, A multilayer Saint-Venant system with mass exchanges for shallow water flows. Derivation and numerical validation. ESAIM: M2AN 45 (2011) 169–200. | DOI | Numdam | MR | Zbl

E. Audusse, M.-O. Bristeau, M. Pelanti and J. Sainte-Marie, Approximation of the hydrostatic Navier-Stokes system for density stratified flows by a multilayer model: kinetic interpretation and numerical solution. J. Comput. Phys. 230 (2011) 3453–3478. | DOI | MR | Zbl

E. Barsky, Critical regimes of two-phase flows with a polydisperse solid phase. In: Fluid Mechanics and Its Applications, Springer, Dordrecht (2010).

D.K. Basson, S. Berres and R. Bürger, On models of polydisperse sedimentation with particle-size-specific hindered-settling factors. Appl. Math. Model. 33 (2009) 1815–1835. | DOI | MR | Zbl

S. Berres, R. Bürger, K.H. Karlsen and E.M. Tory, Strongly degenerate parabolic-hyperbolic systems modeling polydisperse sedimentation with compression. SIAM J. Appl. Math. 64 (2003) 41–80. | DOI | MR | Zbl

R.T. Bonnecaze, H.E. Huppert and J.R. Lister, Patterns of sedimentation from polydispersed turbidity currents. Proc. Roy. Soc. Lond. A 452 (1996) 2247–2261. | DOI

S. Boscarino, R. Bürger, P. Mulet, G. Russo and L.M. Villada, Linearly implicit IMEX Runge–Kutta methods for a class of degenerate convection-diffusion problems. SIAM J. Sci. Comput. 37 (2015) B305–B331. | DOI | MR | Zbl

R. Bürger, W.L. Wendland and F. Concha, Model equations for gravitational sedimentation-consolidation processes. ZAMM Z. Angew. Math. Mech. 80 (2000) 79–92. | DOI | MR | Zbl

R. Bürger, A. García, K.H. Karlsen and J.D. Towers, A family of numerical schemes for kinematic flows with discontinuous flux. J. Eng. Math. 60 (2009) 387–425. | DOI | MR | Zbl

R. Bürger, R. Donat, P. Mulet and C.A. Vega, Hyperbolicity analysis of polydisperse sedimentation models via a secular equation for the flux Jacobian. SIAM J. Appl. Math. 70 (2010) 2186–2213. | DOI | MR | Zbl

R. Bürger, R. Donat, P. Mulet and C.A. Vega, On the implementation of WENO schemes for a class of polydisperse sedimentation models. J. Comput. Phys. 230 (2011) 2322–2344. | DOI | MR | Zbl

R. Bürger, C. Chalons and L.M. Villada, Antidiffusive Lagrangian-remap schemes for models of polydisperse sedimentation. Numer. Methods Partial Differ. Equ. 32 (2016) 1109–1136. | DOI | MR | Zbl

R. Bürger, S. Diehl, M.C. Mart, P. Mulet, I. Nopens, E. Torfs and P.A. Vanrolleghem, Numerical solution of a multi-class model for batch settling in water resource recovery facilities. Appl. Math. Model. 49 (2017) 415–436. | DOI | MR | Zbl

M.J. Castro Diaz, J. Gallardo and C. Parés, High order finite volume schemes based on reconstruction of states for solving hyperbolic systems with nonconservative products. applications to shallow-water systems. Math. Comput. 75 (2006) 1103–1134. | DOI | MR | Zbl

M.J. Castro Diaz, E.D. Fernández-Nieto, A.M. Ferreiro and C. Parés, Two-dimensional sediment transport models in shallow water equations. A second order finite volume approach on unstructured meshes. Comput. Methods Appl. Mech. Eng. 198 (2009) 2520–2538. | DOI | MR | Zbl

M.J. Castro Díaz and E. Fernández-Nieto, A class of computationally fast first order finite volume solvers: PVM methods. SIAM J. Sci. Comput. 34 (2012) A2173–A2196. | DOI | MR | Zbl

M.J. Castro Diaz, E.D. Fernández-Nieto, T. Morales De Luna, G. Narbonareina And C. Parés and C. Parés, A HLLC scheme for nonconservative hyperbolic problems. Application to turbidity currents with sediment transport. ESAIM M2AN 47 (2013) 1–32. | DOI | Numdam | MR | Zbl

C.M. Choux and T.H. Druitt, Analogue study of particle segregation in pyroclastic density currents, with implications for the emplacement mechanisms of large ignimbrites. Sedimentology 49 (2002) 907–928. | DOI

G. Dal Maso, P.G. Lefloch and F. Murat, Definition and weak stability of nonconservative products. J. Math. Pures Appl. 74 (1995) 483–548. | MR | Zbl

R. Donat and P. Mulet, A secular equation for the Jacobian matrix of certain multispecies kinematic flow models. Numer. Methods Partial Differ. Equ. 26 (2010) 159–175. | DOI | MR | Zbl

R. Dorrell and A.J. Hogg, Sedimentation of bidisperse suspensions. Int. J. Multiphase Flow 36 (2010) 481–490. | DOI

R. Dorrell, A.J. Hogg, E. Sumner and P. Talling, The structure of the deposit produced by sedimentation of polydisperse suspensions. J. Geophys. Res. 116 (2011) F01024.

E.D. Fernández-Nieto, Modelling and numerical simulation of submarine sediment shallow flows: transport and avalanches. Bol. Soc. Esp. Mat. Apl. SeMA 49 (2009) 83–103. | MR | Zbl

E.D. Fernández-Nieto and G. Narbona-Reina, Extension of WAF type methods to non-homogeneous shallow water equations with pollutant. J. Sci. Comput. 36 (2008) 193–217. | DOI | MR | Zbl

E.D. Fernández-Nieto, E.H. Koné, T. Morales De Luna and R. Bürger, A multilayer shallow water system for polydisperse sedimentation. J. Comput. Phys. 238 (2013) 281–314. | DOI | MR | Zbl

E.D. Fernández-Nieto, E.H. Koné and T. Chacón Rebollo, A multilayer method for the hydrostatic Navier–Stokes equations: a particular weak solution. J. Sci. Comput. 60 (2014) 408–437. | DOI | MR | Zbl

T.C. Harris, A.J. Hogg and H.E. Huppert, Polydisperse particle-driven gravity currents. J. Fluid Mech. 472 (2002) 333–371. | DOI | Zbl

G.V. Kozyrakis, A.I. Delis, G. Alexandrakis and N.A. Kampanis, Numerical modeling of sediment transport applied to coastal morphodynamics. Appl. Numer. Math. 104 (2016) 30–46. | DOI | MR | Zbl

M.J. Lockett and K.S. Bassoon, Sedimentation of binary particle mixtures. Powder Technol. 24 (1979) 1–7. | DOI

D.L. Marchisio, R.O. Fox, Computational models for polydisperse particulate and multiphase systems. Cambridge Series in Chemical Engineering. Cambridge University Press, Cambridge (2013). | MR

J.H. Masliyah, Hindered settling in a multiple-species particle system. Chem. Eng. Sci. 34 (1979) 1166–1168. | DOI

T. Morales De Luna, M.J. Castro Diaz, C. Parés Madroñal and E.D. Fernández Nieto, On a shallow water model for the simulation of turbidity currents. Commun. Comput. Phys. 6 (2009) 848–882. | DOI | MR | Zbl

R.W.D. Nickalls, A new bound for polynomials when all the roots are real. Math. Gazette 95 (2011) 520–526. | DOI

C. Parés, Numerical methods for nonconservative hyperbolic systems: a theoretical framework. SIAM J. Numer. Anal. 44 (2006) 300–321 (electronic). | DOI | MR | Zbl

C. Parés and M. Castro, On the well-balance property of Roe’s method for nonconservative hyperbolic systems. Applications to shallow-water systems. ESAIM: M2AN 38 (2004) 821–852. | DOI | Numdam | MR | Zbl

J.F. Richardson and W.N. Zaki, Sedimentation and fluidisation: Part I. Trans. Inst. Chem. Eng. (London) 32 (1954) 34–53.

J. Sainte-Marie, Vertically averaged models for the free surface non-hydrostatic Euler system: derivation and kinetic interpretation. Math. Models Methods Appl. Sci. 21 (2011) 459–490. | DOI | MR | Zbl

W. Schneider, G. Anestis and U. Schaflinger, Sediment composition due to settling of particles of different sizes. Int. J. Multiphase Flow 11 (1985) 419–423. | DOI

I. Toumi, A weak formulation of Roe’s approximate Riemann solver. J. Comput. Phys. 102 (1992) 360–373. | DOI | MR | Zbl

M. Ungarish, An Introduction to Gravity Currents and Intrusions. CRC Press, Boca Raton, FL (2009). | DOI | MR | Zbl

Cité par Sources :